Compositions and methods for screening antimicrobials

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S002600, C514S012200

Reexamination Certificate

active

06809180

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to screening compounds for antimicrobial activity, and, more particularly, to using bacterial proteins in vitro to detect compounds that interfere with cell division.
BACKGROUND
Antimicrobials are developed on the principle of selective toxicity. That is to say, antimicrobials, while toxic to the microorganism, must not be toxic to the patient. The selective toxicity of these drugs is usually relative, rather than an absolute. This means simply that most drugs are given to patients in concentrations that are tolerated by the patient, but are lethal or damaging to the microorganism; higher doses would be toxic to the patient and are avoided.
Selective toxicity is often a reflection of the presence of specific receptors present on the microorganism, but lacking in the host system. Other means to achieve selective toxicity commonly rely on the inhibition of biochemical events essential to the microorganism but not the host. As the physiology, structure, and biochemical systems of infectious agents and their hosts are usually quite different, antimicrobial development often relies on these differences.
Although the mechanisms of action of many antimicrobials are not well understood, the five major categories of action include inhibition of cell wall synthesis, inhibition of cell membrane function, inhibition of protein synthesis, inhibition of nucleic acid synthesis, and interference with intermediary metabolism. (See e.g., W. K. Joklik et al., [eds.],
Zinsser Microbiology,
18th ed., Appleton-Century-Crofts, Norwalk, Conn., [1984], p. 193). For example, penicillin, like all &bgr;-lactam drugs, is a compound which selectively inhibits bacterial cell wall synthesis. The initial step in the mechanism of action of these &bgr;-lactam drugs involves the binding of the drug to cell receptors known as “penicillin-binding proteins” (“PBP”). There are from 3-6 PBPs, with molecular weights ranging from 4-12×10
5
; some of these PBPs are transpeptidation enzymes. (
Jawetz, Melnick
&
Adelberg's Medical Microbiology,
19th ed, Appleton & Lange, Norwalk, Conn. [1991], p. 150). After binding to the PBP, the drug inhibits the transpeptidation reaction and synthesis of peptidoglycan in the organism's cell wall material is blocked. This results in the eventual triggering of an autolytic cascade which leads to cell lysis.
Because of their relatively high concentration of peptidoglycan, gram-positive organisms tend to be much more susceptible to the effects of penicillin and other &bgr;-lactams than gram-negative organisms. Importantly, because they affect cell wall synthesis, penicillin and the other &bgr;-lactams are only effective against actively growing and dividing cultures. However, one of the benefits of these &bgr;-lactam drugs is that animal cells do not have peptidoglycan; consequently, such drugs are remarkably non-toxic to humans and other animals.
Some organisms are naturally resistant to penicillin and the other &bgr;-lactams due to their lack of PBPs, the inaccessibility of the PBPs due to the presence of permeability barriers, the failure of autolytic cascades to be activated following binding of the drug, or the lack of peptidoglycan in the cell wall (e.g., the mycoplasmas, L-forms, and metabolically inactive bacteria). Unfortunately, following years of use to treat various infections and diseases, penicillin resistance has become increasingly widespread in the microbial populations that were previously susceptible to the action of these drugs. Some microorganisms produce &bgr;-lactamase, an enzyme which destroys the antimicrobial itself, while some microorganisms have undergone genetic changes which result in alterations to the PBPs, such that the drugs will no longer effectively bind to the receptors; still other organisms have evolved in a manner that prevents the lysis of cells to which the drug has bound. In this latter scenario, the drug has inhibited the growth of the cell, but it is not killed. In some circumstances this appears to contribute to the relapse of disease following premature discontinuation of treatment, as some of the cells remain viable and may begin growing once the antimicrobial is removed from their environment.
The development of tolerance and resistance to antimicrobials represents a significant threat to the ability to treat disease. Many factors have contributed to this increased observance of resistant strains, including over-use and/or inappropriate administration of antimicrobials, the capability of many organisms to exchange genetic material which confers resistance (i.e., R plasmids), and the relatively rapid mutation rate observed with many bacteria, which allows for selection of resistant organisms.
One well-documented example which highlights the problems with development of penicillin resistance involves
Streptococcus pneumoniae
, a gram-positive organism. Initially, the introduction of penicillin to treat
S. pneumoniae
resulted in a significant decrease in the mortality due to this organism. However,
S. pneumoniae
remains of great concern, as it is one of the agents most frequently associated with invasive infections; it is the most common cause of bacterial pneumonia and otitis media; it is the second most common cause of bacterial meningitis; and it is the third most common isolate from blood cultures. (J. F. Sessegolo et al., “Distribution of Serotypes and Antimicrobial Resistance of
Streptococcus pneumoniae
Strains Isolated in Brazil From 1988 to 1992,” J. Clin. Microbiol., 32:906-911 [1994]). Thus, the development of antimicrobial resistance in this organism is of great cause for concern.
The first report of pneumococci with decreased susceptibilities to penicillins occurred in 1967. Since this initial report out of Australia, additional strains with decreased susceptibilities have been reported worldwide. Additionally, resistance to penicillin alternatives, such as chloramphenicol, erythromycin, tetracycline clindamycin, rifampin, and sulfamethoxazole-trimethoprim has been reported, often in conjunction with penicillin resistance. Multiple-antimicrobial resistance in pneumococci was first reported in 1977. Since this initial report out of South Africa, multi-drug resistant strains have been reported in several countries, including Spain, Italy, France, Belgium, Hungary, Pakistan, Czechoslovakia, Canada, the United Kingdom, and the United States. (Sessegolo et al. supra, at 906).
In a survey conducted in Brazil, of 42 serotypes among 288
S. pneumoniae
strains isolated during 1988-1992, Sessegolo et al. reported that decreased susceptibility to penicillin was detected in 26.7% of the strains. In addition, 35.9% of the strains were resistant to tetracycline, 29.2% were resistant to sulfamethoxazole-trimethoprim, 1.5% were resistant to rifampin, 0.80% were resistant to penicillin, and 0.50% were resistant to chloramphenicol. The penicillin-resistant strains were also found to be resistant to, or exhibited decreased susceptibility to cephalosporins. The resistance characteristics of these strains were also semi-quantitated, with intermediate resistances reported at 17.9% for penicillin, 8.7% for tetracycline, 6.7% for chloramphenicol, 6.1% for erythromycin, and 3.1% for rifampin.
Results obtained from patients in Rio de Janiero in 1981 and 1982, indicated that there was no penicillin resistance (relative or complete) in the pneumococcal isolates. However, during the period between 1988 to 1992, 19.4% of the strains from the same geographic population were relatively resistant, and 1.5% were completely resistant to penicillin. These results highlight the rapid spread of antimicrobial resistance.
Once an organism has developed resistance to a particular drug, it becomes important that an effective replacement drug be identified. If the organism develops resistance to this second drug, another replacement is needed. One example of the historical development of multiple drug resistance is gonorrhea. Prior to the 1930′s, treatmen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compositions and methods for screening antimicrobials does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compositions and methods for screening antimicrobials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions and methods for screening antimicrobials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3297365

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.