Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai
Reexamination Certificate
2001-12-21
2004-06-08
Lacourciere, Karen A. (Department: 1635)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Carbohydrate doai
C536S024300, C536S024310, C536S024330, C536S024500
Reexamination Certificate
active
06747014
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to compositions and methods which enhance the local and systemic uptake and delivery of nucleic acids via non-parenteral routes of administration. More particularly, the methods and compositions enhance the transport of oligonucleotides and other nucleic acids across mucosal membranes through the use of one or more penetration enhancers. The compositions of the present invention are solutions, emulsions, and related mixtures that facilitate the uptake and delivery of oligonucleotides and other nucleic acids. The present invention is directed to the use of various fatty acids, bile salts, chelating agents and other penetration enhancers, as well as carrier compounds, to enhance the stability of oligonucleotides and other nucleic acids and/or their transport across cell walls and/or into cells. More specific objectives and advantages of the invention will hereinafter be made clear or become apparent to those skilled in the art during the course of explanation of preferred embodiments of the invention.
BACKGROUND OF THE INVENTION
Advances in the field of biotechnology have led to significant advances in the treatment of diseases such as cancer, genetic diseases, arthritis and AIDS that were previously difficult to treat. Many such advances involve the administration of oligonucleotides and other nucleic acids to a subject, particularly a human subject. The administration of such molecules via parenteral routes has been shown to be effective for the treatment of diseases and/or disorders. See, e.g., Draper et al., U.S. Pat. No. 5,595,978, Jan. 21, 1997, which discloses intravitreal injection as a means for the direct delivery of antisense oligonucleotides to the vitreous humor of the mammalian eye. See also, Robertson,
Nature Biotechnology
, 1997, 15, 209, and
Genetic Engineering News
, 1997, 15, 1, each of which discuss the treatment of Crohn's disease via intravenous infusions of antisense oligonucleotides. Non-parenteral routes for administration of oligonucleotides and other nucleic acids (such as oral or rectal delivery or other mucosal routes) offers the promise of simpler, easier and less injurious administration of such nucleic acids without the need for sterile procedures and their concomitant expenses, e.g., hospitalization and/or physician fees. There thus is a need to provide compositions and methods to enhance the availability of novel drugs such as oligonucleotides when administered via non-parenteral routes. It is desirable that such new compositions and methods provide for the simple, convenient, practical and optimal non-parenteral delivery of oligonucleotides and other nucleic acids.
SUMMARY OF THE INVENTION
In accordance with the present invention, compositions and methods are provided for the non-parenteral delivery and mucosal penetration of nucleic acids in an animal. In particular, the present invention provides compositions and methods for modulating the production of selected proteins or other biological phenomena in an animal, which involves the administration of an oligonucleotide, especially an antisense oligonucleotide, via non-parenteral means to an animal, thereby circumventing the complications and expense which may be associated with intravenous and other parenteral modes of in vivo administration. “Non-parenteral administration” refers to the contacting, directly or otherwise, to all or a portion of the alimentary canal, skin, eyes, pulmonary tract, urethra or vagina of an animal. Compositions of the present invention may be a mixture of components or phases as are present in emulsions (including microemulsions and creams), and related formulations comprising two or more phases.
In one aspect, the present invention provides pharmaceutical compositions comprising at least one nucleosidic moiety such as a nucleoside, nucleotide, or nucleic acid in a solution or emulsion. The nucleic acid can be a ribozyme, a PNA, or an aptamer, but preferably is an oligonucleotide such as, for example, an oligonucleotide that modulates expression of a cellular adhesion protein, modulates a rate of cellular proliferation, or has biological activity against eukaryotic pathogens or retroviruses.
In certain embodiments, solutions according to the invention consist essentially of the nucleosidic moiety and a solvent comprising, for example, saline solution or cocoa butter. Emulsions according to the invention include oil-in-water emulsions, water-in-oil emulsions, oil-in-water-in-oil emulsions, and water-in-oil-in-water emulsions. In certain embodiments, the pharmaceutical compositions of the invention further comprise a penetration enhancer such as a fatty acid, a bile salt, a chelating agent, a surfactant, and a non-surfactant such as an unsaturated cyclic urea, a 1-alkyl-alkanone, a 1-alkenylazacyclo-alakanone, or a steroidal anti-inflammatory agent.
Also provided are methods for treating an animal comprising administering to the animal a therapeutically effective amount of a pharmaceutical composition according to the invention. The composition can be administered by, for example, buccal, sublingual, endoscopic, rectal, oral, vaginal, topical, pulmonary, or urethral routes. In preferred embodiments, the compositions of the invention are administered rectally means of an enema or a suppository.
Because of the advantages of non-parenteral delivery of drugs of the antisense class, the compositions and methods of the invention can be used in therapeutic methods as explained in more detail herein. The compositions and methods herein provided may also be used to examine the function of various proteins and genes in an animal, including those essential to animal development. The methods of the invention can be used, for example, for the treatments of animals that are known or suspected to suffer from diseases such as ulcerative colitis, Chrohn's disease, inflammatory bowel disease, or undue cellular proliferation.
DETAILED DESCRIPTION OF THE INVENTION
The invention provides compositions and methods for the local as well as systemic delivery of oligonucleotides and other nucleic acids to an animal via non-parenteral means. In particular, the present invention provides compositions and methods for modulating the in vivo expression of a gene in an animal through the non-parenteral administration of an antisense oligonucleotide, thereby circumventing the complications and expense which may be associated with intravenous and other parenteral routes of administration.
Enhanced bioavailability of oligonucleotides and other nucleic acids is achieved via the non-parenteral administration of the compositions and methods of the present invention. The term “bioavailability” refers to a measurement of what portion of an administered drug reaches the circulatory system when a non-parenteral mode of administration is used to introduce the drug into an animal. The term is used for drugs whose efficacy is related to the blood concentration achieved, even if the drug's ultimate site of action is intracellular (van Berge-Henegouwen et al.,
Gastroenterol
., 1977, 73, 300). Traditionally, bioavailability studies determine the degree of intestinal absorption of a drug by measuring the change in peripheral blood levels of the drug after an oral dose (DiSanto, Chapter 76 In:
Remington's Pharmaceutical Sciences
, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, Pa., 1990, pages 1451-1458). The area under the curve (AUC
0
) is divided by the area under the curve after an intravenous (i.v.) dose (AUC
iv
) and the quotient is used to calculate the fraction of drug absorbed. This approach cannot be used, however, with compounds which have a large “first pass clearance,” i.e., compounds for which hepatic uptake is so rapid that only a fraction of the absorbed material enters the peripheral blood. For such compounds, other methods must be used to determine the absolute bioavailability (van Berge-Henegouwen et al.,
Gastroenterol
., 1977, 73, 300). With regards to oligonucleotides, studies suggest that they are rapidly elimi
Cook Phillip Dan
Ecker David J.
Hardee Gregory E.
Manoharan Muthiah
Teng Ching-Leou
Epps-Ford Janet L.
Grumbling Matthew V.
ISIS Pharmaceuticals Inc.
Lacourciere Karen A.
O'Connor Cozen
LandOfFree
Compositions and methods for non-parenteral delivery of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Compositions and methods for non-parenteral delivery of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions and methods for non-parenteral delivery of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3346778