Compositions and methods for modifying toxic effects of...

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S300000, C530S391700, C530S370000, C530S396000, C530S403000, C514S002600, C514S012200, C435S069100, C435S252300, C435S320100, C424S183100, C536S023100

Reexamination Certificate

active

06566500

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of vascular leak, and particularly concerns toxins which induce or cause vascular leak syndrome (VLS). The invention provides immunotoxins (ITs) and cytokines which have been mutated to lack amino acid sequences which induce VLS and other toxic side effects. Disclosed are methods for mutating DNA segments encoding cytokines or immunotoxins so that an immunotoxin is produced that lacks sequences that induce VLS and other toxic side effects. Also disclosed are methods of preparing and using peptides which promote VLS and thus aid delivery of molecules into tissues. The present invention also relates to methods of preparing peptides which inhibit VLS and the used of mutated toxins as vaccines to protect immunized individuals from later toxicity.
2. Description of Related Art
VLS is often observed during bacterial sepsis and may involve IL-2 and a variety of other cytokines (Baluna and Vitetta, 1996). The mechanisms underlying VLS are unclear and are likely to involve a cascade of events which are initiated in endothelial cells (ECs) and involve inflammatory cascades and cytokines (Engert et al., 1997). VLS has a complex etiology involving damage to vascular endothelial cells (ECs) and extravasation of fluids and proteins resulting in interstitial edema, weight gain and, in its most severe form, kidney damage, aphasia, and pulmonary edema (Sausville and Vitetta, 1997; Baluna and Vitetta, 1996; Engert et al., 1997). Vascular leak syndrome (VLS) has been a major problem with all ITs thus far tested in humans, as well as cytokines such as interleukin 2 (IL-2), TNF and adenovirus vectors (Rosenberg et al., 1987; Rosensten et al., 1986).
ITs are hybrid molecules consisting of monoclonal antibodies (MAbs) or other cell-binding ligands, which are biochemically or genetically linked to toxins, toxin subunits, or ribosome inactivating proteins (RIPs) from plants, fungi or bacteria (Vitetta et al., 1993). Over the past two decades, ITs containing deglycosylated (dg) ricin A chain (dgRTA) have been developed, structurally optimized for stability and activity and evaluated for activity both in vitro, and in vivo in rodents, monkeys and humans (Vitetta et al., 1993; Sausville and Vitetta, 1997; Baluna and Vitetta, 1996).
It has been postulated that dgRTA-ITs induces VLS by damaging vascular endothelial cells (Soler-Rodriguez et al., 1993; Baluna et al., 1996). IL-2 and ITs prepared with the catalytic A chain of the plant toxin, ricin (RTA) and other toxins, damage human ECs in vitro and in vivo (Dutcher et al., 1991; Rosenberg et al., 1987; Vial and Descotes, 1992). Studies using human umbilical vein ECs (HUVECs) demonstrated that dgRTA or ITs prepared with dgRTA can damage these cells within one hour (Soler-Rodriguez et al., 1993) while the inhibition of protein synthesis required 4 hrs or longer. DgRTA-ITs also interfere with fibronectin (Fn)-mediated adhesion (Baluna et al., 1996). Fn inhibits dgRTA-mediated damage to human umbilical vein endothelial cells (HUVECS) (Baluna et al., 1996). Cell adhesion to Fn is mediated by integrins which recognize RGD and LDV sequences in the Fn molecule (Makarem and Humphries, 1991; Wayner and Kovach, 1992).
Three MAbs linked to dgRTA have been evaluated in Phase I trials in over 200 patients with relapsed chemorefractory lymphoma, myeloma, Hodgins disease and graft vs. host disease (GVHD) (Sausville and Vitetta, 1997). These ITs have shown no evidence of myelotoxicity or hepatotoxicity, but all have induced VLS at the maximum tolerated dose (MTD) as defined by hypoalbuminemia, weight gain, and in the most severe cases, pulmonary edema and hypotension (Baluna et al., 1996). In addition, they have induced myalgia and, in 3% of patients, rhabdomyalyosis at the MTD (Sausville and Vitetta, 1997); this side effect may also be related to VLS and result from muscle edema. Further, aphesias have occurred in <5% of patients' these may be due to edema in the cerebral microvasculture.
In certain aspects, the invention provides the use of a modified proteinaceous composition that has altered, relative to the sequence of a native proteinaceous composition, at least one amino acid of a sequence comprising (x)D(y), for the manufacture of a medicament for the treatment of a disease, including but not limited to GVHD, non-Hodgkin's and Hodgkin's lumphoma, myeloma, as well as metastatic lesions of solid tumors and damage to endothelial cells (i.e., VLS).
Clearly, further development of dgRTA-ITs as well as other ITs containing toxins and RIPS, as well as cytokines as clinical agents would be greatly facilitated by the elimination or reduction of VLS. If VLS could be avoided or reduced it would permit the use of much higher doses of a variety of therapeutic agents such as Its, gene therapy and cytokines without the dose limiting side effects currently encountered.
SUMMARY OF THE INVENTION
The present invention overcomes the deficiencies in the art by providing methods for modulating the ability of various proteinacious compounds to induce toxic effects, and proteinacious compounds that have been modified such that they have modulated ability to induce toxic effects. In some embodiments, the invention allows for the production of ITs with a reduced ability to promote or induce such toxic effects, including, for example, VLS. ITs made in accordance with the invention are for any number of therapeutic applications, for example, the treatment of GVHD, non-Hodgkin's and Hodgkin's lymphoma, myloma, and metastatic lesions tumors, in some particular aspects solid tumors. The present invention also provides methods for reducing the VLS promoting ability of proteinaceous compositions through a mutation of sequences that induce or promote any of a number of toxic effects. The present invention provides ITs, IL-2 TNF and adenovirus with a reduced ability to promote toxic effects, and methods of using such compounds.
The invention, in one aspect, provides a method of modifying the ability of a proteinaceous composition to induce a toxic effect, comprising the steps of: identifying at least one amino acid sequence comprising the sequence (x)D(y), wherein (x) is selected from the group leucine, isoleucine, glycine and valine, and wherein (y) is selected from the group valine, leucine and serine; and altering the amino acid sequence comprising the sequence (x)D(y). In certain embodiments, the altering comprises at least one mutation of the amino acid sequence. In other embodiments, the amino acid sequence is removed. In particular aspects, the amino acid sequence comprises the sequence (x)D(y), wherein the (x)D(y) sequence is GDL, GDS, GDV, IDL, IDS, IDV, LDL, LDS, LDV, LDS, VDL or VDV. In certain more specific embodiments, the invention provides a modified proteinaceous composition that has altered, relative to the sequence of a native proteinaceous composition, at least one amino acid of a sequence comprising (x)D(y), wherein (x) is selected from the group leucine, isoleucine, glycine and valine, and wherein (y) is selected from the group valine, leucine and serine, for use as a medicament.
In certain aspects, the composition has a reduced ability to induce at least one toxic effect. In other aspects, the altering enhances the ability of the composition to induce at least one toxic effect. In particular embodiments, the toxic effect is, for example, VLS, the ability to induce apoptosis, a disintigrin-like activity, the ability to damage EC cells or a combination thereof. Of course; those of ordinary skill will, by following the teachings of this specification, be able to determine additional toxic effect that may be modulated according to the methods disclosed herein. In some embodiments of the invention, it is desirable to decrease the level of the toxic effect. For example, there is great benefit to be gained by creating an IT which exhibits no, or lessened, VLS. In alternative embodiments, it will be desirable to increase the level of a given toxic eff

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compositions and methods for modifying toxic effects of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compositions and methods for modifying toxic effects of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions and methods for modifying toxic effects of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3036747

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.