Compositions and methods for isolating lung surfactant...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S012200, C530S300000, C530S324000, C424S185100

Reexamination Certificate

active

06458759

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to (1) a composition of matter in which the polypeptide has the chemical structure, biophysical activity and physiologic effects of the small, hydrophobic protein SP-B with a purity of ≧95%; (2) a second composition of matter in which the polypeptide solute has the chemical structure, biophysical activity and physiologic effects of the small, hydrophobic protein SP-C with a purity of ≧95%; and (3) the methods for producing the compositions of matter.
BACKGROUND OF THE INVENTION
Role of Surfactant in Pulmonary Physiology
Inhaled air containing oxygen travels through the trachea, the bronchi, and the bronchioles to the hundreds of millions of terminal alveoli. The terminal alveoli are the air spaces in the lungs where oxygen is taken up by the blood in exchange for carbon dioxide.
At the interface between the gas in the terminal alveoli and the liquid of the lung tissue, (i) oxygen diffuses into the blood from the alveoli and (ii) carbon dioxide diffuses from the blood to the alveolar air before being exhaled. To diffuse from the alveolar gas to the blood, an oxygen molecule must traverse the liquid lining the alveoli, at least one epithelial cell, the basement membrane, and at least one endothelial cell.
Pulmonary surfactant acts at the interface between alveolar gas and the liquid film lining the luminal surface of the cells of the terminal alveoli. The normal pulmonary surfactant lining is extremely thin, usually no more than 50 nm thick. Thus, the total fluid layer covering the 70 square meters of alveolar surface in an adult human is only approximately 35 ml.
For materials to be effective lung surfactants, surfactant molecules must move rapidly to the surface of the liquid. Pulmonary surfactant functions by adsorbing to the surface of the liquid covering these lining cells and changing surface tension of the alveolar fluid during the respiratory cycle.
Surface tension is a characteristic of most liquid solutions. At the interface between liquid and a gas phase, the movement of molecules at the surface of the liquid is restricted by intermolecular forces acting on those molecules. The intermolecular forces have a net direction that tends to decrease the area of the surface. The net force at the surface is referred to as surface tension. Surface tension varies with molarity, temperature and multiple solutes. Surface tension has units of force per unit length (dynes/cm or mN/m). The vector of the surface tension force is perpendicular to the plane of the interface.
The lungs of vertebrates contain surfactant, a complex mixture of lipids and protein which causes surface tensions to rise during surface expansion (inflation) and decrease during surface compression (deflation). During lung deflation, surfactant decreases surface tension to ≦1 mN/m, so that there are no surface forces that would otherwise promote alveolar collapse. Aerated alveoli that have not collapsed during expiration permit continuous O
2
and CO
2
transport between blood and alveolar gas and require much less force to inflate during the subsequent inspiration.
In order to attain sufficient uptake of oxygen by the blood and excretion of carbon dioxide from the blood, an animal's lungs must ventilate the terminal alveoli simultaneously and evenly. Either unsynchronized or uneven ventilation will prevent sufficient oxygen uptake into the circulating blood and result in the retention of carbon dioxide in the body.
During inflation, lung surfactant increases surface tension as the alveolar surface area increases. A rising surface tension in expanding alveoli opposes over-inflation in those airspaces and tends to divert inspired air to less well-aerated alveoli, thereby facilitating even lung aeration.
Surfactant Deficiency or Dysfunction
Although the exact composition and physical characteristics of natural lung surfactant have not been determined, material isolated from the lumen of lungs, termed natural surfactant, contains a mixture of phospholipids, neutral lipids, and proteins. (Jobe A, Ikegami M, Surfactant for the treatment of respiratory distress syndrome. Am Rev Respir Dis, 1987; 136:1256-75.) The phospholipids are not specific to surfactant, but are also present in other biologic materials, particularly membranes. The predominant phospholipids in surfactant, however, are disaturated phosphatidylcholines which are present in low concentrations in most membranes. Among the proteins found in the lung lumen are mucoproteins, plasma proteins, and lung specific proteins. These lung specific proteins are described in more detail in Section 2.3.
The alveoli are lined with epithelial cells that have a role in producing surfactant, maintaining the activity of surfactant, and preventing the inactivation of surfactant. The epithelial cells form a continuous, tight barrier that normally prevents entry into the alveoli of molecules from the circulation that can inhibit surfactant.
The alveolar epithelium consists of at least two types of alveolar cells, referred to as type I and type II alveolar cells. The type II alveolar cells normally synthesize both the phospholipids and proteins that are in lung surfactant, store newly synthesized material in the intracellular inclusion bodies, secrete the surfactant into the alveolar space, absorb surfactant from the alveolar space, and metabolize material re-incorporated into the type II cell. The role of type I cells in surfactant function has not yet been identified.
Lung surfactant is normally synthesized at a very low rate until the last six weeks of fetal life. Human infants born more than six weeks before the normal term of a pregnancy have a high risk of being born with inadequate amounts of lung surfactant and inadequate rates of surfactant synthesis. The more prematurely an infant is born, the more severe the surfactant deficiency is likely to be. Severe surfactant deficiency can lead to respiratory failure within a few minutes or hours of birth. The surfactant deficiency produces progressive collapse of alveoli (atelectasis) because of the decreasing ability of the lung to expand despite maximum inspiratory effort. As a result, inadequate amounts of oxygen reach the infant's blood.
Endogenous surfactant production typically accelerates after birth, even in quite premature infants. If the infant survives the first few days, lung surfactant status generally becomes adequate.
Additional causes of respiratory failure from surfactant dysfunction have been reported due to defects in surfactant synthesis (congenital protein B deficiency), or in secretion or metabolism of surfactant (alveolar proteinosis). In addition, lung surfactant can be inhibited and inactivated in vitro by a variety of proteins, cell wall phospholipids, enzymes, and other products of inflammatory responses.
Injury to juvenile and adult animals can also inactivate surfactant and produce a respiratory failure with a similar pathophysiology to the surfactant deficiency in premature infants. This respiratory failure is often referred to as the Adult (or Acute) Respiratory Distress Syndrome, ARDS. This syndrome results from several simultaneous pathologic processes, one of which is generalized inhibition of the extra-cellular surfactant in the alveolar space plus dysfunction of the type II alveolar cells which adversely affect the synthesis, secretion, or metabolism of surfactant.
Current treatment of respiratory failure includes supplementation of oxygen, mechanical ventilation, and instillation or aerosolization of materials with lung surfactant activity. Some patients die from respiratory failure despite current treatments, some survive with permanently damaged lungs, and other patients recover after prolonged therapy.
Hydrophobic Surfactant Proteins
Lung surfactants are complex materials composed of multiple molecules that interact physically, without combining chemically, to achieve their biologic activity. Natural lung surfactant contains lipids and proteins. There are two types of lung surfactant proteins, hydrophilic and hydrophobic. T

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compositions and methods for isolating lung surfactant... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compositions and methods for isolating lung surfactant..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions and methods for isolating lung surfactant... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2973008

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.