Coating processes – With post-treatment of coating or coating material – Heating or drying
Reexamination Certificate
1999-06-22
2002-05-14
Short, Patricia A. (Department: 1712)
Coating processes
With post-treatment of coating or coating material
Heating or drying
C427S389000, C427S389900, C427S393400, C427S393500, C008S115600
Reexamination Certificate
active
06387448
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to methods and compositions for imparting stain resistance to a substrate. Substrates that may be treated with the methods and compositions of the invention preferably include fibers containing free amino groups, including, but not limited to, polyamide fibers. The processes and compositions of the invention provide the substrate with stain resistance and good photo stability, which prevents yellowing. The compositions of the present invention also provide excellent bleach resistance to substrates containing free amino groups, including, but not limited to, polyamide fibers. The invention also relates to articles treated with the methods herein.
BACKGROUND OF THE INVENTION
Materials and substrates containing free amino groups are subject to stain by certain natural and artificial colorants found in foods and other consumer products. The addition of stain resistant characteristics to substrates containing free amino groups provides a more desirable end product for the consumer.
Substrates, including fibers containing free amino groups, such as polyamide fibers, can be made stain resistant to certain stains by contacting the substrate with a solution containing an anionically modified phenol formaldehyde polymer, phenol sulfonates and their derivatives, naphthalene condensates, or blends of these materials. It is also known to blend these materials with polyether polymers, vinyls, polycarbonate polymers, and ethylene polymers.
One method of imparting stain resistance to fibers containing free amino groups is disclosed in U.S. Pat. No. 4,699,812 (Munk et al.). U.S. Pat. No. 4,699,812 discloses a process for imparting stain resistance in which a solution of aliphatic sulfonic acid is applied to the fibers, which are then dried.
U.S. Pat. No. 4,592,940 (Blyth et al.) discloses a process for imparting stain resistance to nylon fibers, in which the fibers are treated with the condensation products of formaldehyde and a mixture of diphenolsulfone and phenolsulfonic acid. The substrate is treated by immersing the carpet in the boiling treatment solution at a pH of 4.5 or less.
U.S. Pat. No. 4,822,373 (Olson et al.) discloses a process for treating polyamide materials in which a fibrous polyamide substrate is treated with a combination of (a) a partially sulfonated phenol formaldehyde polymer and (b) polymethacrylic acid, copolymers of methacrylic acid, or combinations of polymethacrylic acid and copolymers of methacrylic acid. The solution is generally applied as an aqueous solution at a pH below about 7.
U.S. Pat. No. 4,940,757 (Moss, III et al.) discloses a stain resistant polymeric composition for fibers having polyamide linkages. The composition is prepared by polymerizing an &agr;-substituted acrylic acid in the presence of a sulfonated aromatic condensation polymer. The composition is applied to the substrate via flood, spray, foam methods, etc.
Additionally, U.S. Pat. No. 3,949,124 (Jilla) discloses a method and composition of imparting soil-repellency and antistatic properties. The reference discloses the pretreatment of a substrate with a material containing the condensation products of formaldehyde and another component chosen from a wide variety and long list, some of which are sulfonated phenol, diaryl sulfone, urea, melamine and dicayndiamide, followed by heat treatment and application of a separate composition containing, as one ingredient, a water-dispersible polyester and amino polymer followed by another heat treatment. U.S. Pat. No. 3,949,124 concerns imparting antistatic and antisoiling properties, which are distinct from stain resistance.
Those skilled in the art recognize that while anionically modified phenol formaldehyde polymers, napthalene condensates, lignin sulfonates and phenol sulfonate derivatives provide stainblocking, their photo instability causes yellowing of the dyed substrate over time. Therefore, there exists a need for compositions and methods that provide excellent stain resistance, while at the same time exhibiting reduced photo instability, i.e. reduced yellowing.
Moreover, substrates containing free amino groups, such as polyamide fibers with or without additional blended materials, are susceptible to chemical attack from solutions of sodium hypochlorite, i.e., chlorine bleach. U.S. Pat. No. 5,482,764 (McBride et al.) discloses the treatment of polyamide fibers with phenolic compounds in order to impart bleach resistance. Again, however, such compounds exhibit reduced photostabililty. Therefore, there is a need for compositions and methods that impart excellent bleach resistance, but do not result in yellowing of the substrate.
SUMMARY OF THE INVENTION
The present invention solves these problems, and provides further surprising properties. These and further objects of the invention will be more readily appreciated when considering the following disclosure and appended claims.
The present invention concerns a composition for imparting stain resistance to a substrate comprising (a) a component selected from the group consisting of (1) an anionically modified phenol formaldehyde polymer comprising a phenol moiety and a formaldehyde moiety, (2) a naphthalene condensate, (3) a lignin sulfonate, (4) a phenol sulfonate derivative, a mixture thereof, and (5) a (meth)acrylic polymer comprising residues of acrylic or methacrylic acid; and (b) a polyester.
The invention further concerns a method of treating a substrate for stain resistance comprising applying to the substrate an aqueous solution or dispersion comprising (a) a component selected from the group consisting of (1) an anionically modified phenol formaldehyde polymer comprising a phenol moiety and a formaldehyde moiety, (2) a naphthalene condensate, (3) a lignin sulfonate, (4) a phenol sulfonate derivative, a mixture thereof, and (5) a (meth)acrylic polymer comprising residues of acrylic or methacrylic acid; (b) a polyester; and (c) water.
The invention further concerns a method of treating a substrate for stain resistance comprising treating the substrate with a bleach resist composition comprising (a) a component selected from the group consisting of (1) an anionically modified phenol formaldehyde polymer comprising a phenol moiety and a formaldehyde moiety, (2) a naphthalene condensate, (3) a lignin sulfonate, (4) a phenol sulfonate derivative, a mixture thereof, and (5) a (meth)acrylic polymer comprising residues of acrylic of methacrylic acid; and (b) a polyester.
The invention further concerns a method of treating a substrate for bleach resistance comprising applying to the substrate an aqueous solution or dispersion comprising (a) a component selected from the group consisting of (1) an anionically modified phenol formaldehyde polymer comprising a phenol moiety and a formaldehyde moiety, (2) a naphthalene condensate, (3) a lignin sulfonate, (4) a phenol sulfonate derivative, a mixture thereof, and (5) a (meth)acrylic polymer comprising residues of acrylic or methacrylic acid; (b) a polyester; and (c) water.
The invention further concerns a method of treating a substrate for bleach resistance comprising treating the substrate with a bleach resist composition comprising (a) a component selected from the group consisting of (1) an anionically modified phenol formaldehyde polymer comprising a phenol moiety and a formaldehyde moiety, (2) a naphthalene condensate, (3) a lignin sulfonate, (4) a phenol sulfonate derivative, a mixture thereof, and (5) a (meth)acrylic polymer comprising residues of acrylic of methacrylic acid; and (b) a polyester.
The invention also includes articles treated with the composition, and articles made using treated substrates. In a preferred embodiment, the articles include, but are not limited to, fibers having polyamide groups.
DETAILED DESCRIPTION OF THE INVENTION
The present invention may be understood more readily by reference to the following detailed description of preferred embodiments of the invention and the Examples included therein.
Before the present compositions of matter and methods are disclosed and
Collier Robert B.
Mull J. Todd
Arrow Engineering, Inc.
Needle & Rosenberg P.C.
Short Patricia A.
LandOfFree
Compositions and methods for imparting bleach resistance does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Compositions and methods for imparting bleach resistance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions and methods for imparting bleach resistance will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2851795