Compositions and methods for enhanced biostability and...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023100, C536S024300, C435S006120, C514S04400A

Reexamination Certificate

active

06753423

ABSTRACT:

FIELD OF THE INVENTION
This application is directed to oligonucleotides and oligonucleosides functionalized to include lipophilic moieties. Relative to their unfunctionalized parent compounds, such lipophilic oligonucleotide conjugates have improved biostability and altered biodistribution in mammals. In one embodiment, such lipophilic oligonucleotide conjugates are used in a method of targeting antisense oligonucleotides to hepatic tissues and thereby preferentially modulating gene expression in the liver and associated tissues of a mammal.
BACKGROUND OF THE INVENTION
Messenger RNA (mRNA) directs protein synthesis. Antisense methodology is the complementary hybridization of relatively short oligonucleotides to mRNA or DNA such that the normal, essential functions of these intracellular nucleic acids are disrupted. Hybridization is the sequence-specific hydrogen bonding via Watson-Crick base pairs of oligonucleotides to RNA or single-stranded DNA. Such base pairs are said to be complementary to one another.
The naturally occurring events that provide the disruption of the nucleic acid function, discussed by Cohen in
Oligonucleotides: Antisense Inhibitors of Gene Expression,
CRC Press, Inc., Boca Raton, Fla. (1989) are thought to be of two types. The first, hybridization arrest, denotes the terminating event in which the oligonucleotide inhibitor binds to the target nucleic acid and thus prevents, by simple steric hindrance, the binding of essential proteins, most often ribosomes, to the nucleic acid. Methyl phosphonate oligonucleotides (Miller, et al.,
Anti
-
Cancer Drug Design,
1987, 2, 117) and &agr;-anomer oligonucleotides are examples of antisense agents which are thought to disrupt nucleic acid function by hybridization arrest.
The second type of terminating event for antisense oligonucleotides involves the enzymatic cleavage of the targeted RNA by intracellular RNase H. A 2′-deoxyribofuranosyl oligonucleotide or oligonucleotide analog hybridizes with the targeted RNA and this duplex activates the RNase H enzyme to cleave the RNA strand, thus destroying the normal function of the RNA. Phosphorothioate oligonucleotides are the most prominent example of an antisense agent that operates by this type of antisense terminating event.
Considerable research is being directed to the application of oligonucleotides and oligonucleotide analogs as antisense agents for diagnostics, research reagents and potential therapeutic purposes. At least for therapeutic purposes, and for research purposes involving whole cells, tissues or animals, the antisense oligonucleotides and oligonucleotide analogs must be transported across cell membranes or otherwise taken up by cells in order to exhibit activity. One method for generally increasing membrane or cellular transport is by the attachment of a pendant lipophilic group. More specifically, Ramirez et al. (
J. Am. Chem. Soc.,
1982, 104, 5483) introduced the phospholipid group 5′-O-(1,2-di-O-myristoyl-sn-glycero-3-phosphoryl) into the dimer TpT independently at the 3′ and 5′ positions. Subsequently Shea et al. (
Nuc. Acids Res.,
1990, 18, 3777) disclosed oligonucleotides having a 1,2-di-O-hexyldecyl-rac-glycerol group linked to a 5′-phosphate on the 5′-terminus of the oligonucleotide. Certain of the Shea et. al. authors also disclosed these and other compounds in patent application PCT/US90/01002. A further glucosyl phospholipid was disclosed by Guerra et al. (
Tetrahedron Letters,
1987, 28, 3581).
In other work, a cholesteryl group was attached to the inter-nucleotide linkage between the first and second nucleotides (from the 3′ terminus) of an oligonucleotide. This work is disclosed in U.S. Pat. No. 4,958,013 and further by Letsinger et al. (
Proc. Natl. Acad. Sci. USA,
1989, 86, 6553). The aromatic intercalating agent anthraquinone was attached to the 2′ position of a sugar fragment of an oligonucleotide as reported by Yamana et al. (
Bioconjugate Chem.,
1990, 1, 319). The same researchers placed pyrene-1-methyl at the 2′ position of a sugar (Yamana et. al.,
Tetrahedron Lett.,
1991, 32, 6347).
Lemairte et al. (
Proc. Natl. Acad. Sci. USA,
1986, 84, 648) and Leonetti et al. (
Bioconjugate Chem.,
1990, 1, 149). The 3′ terminus of the oligonucleotides each include a 3′-terminal ribose sugar moiety. The poly(L-lysine) was linked to the oligonucleotide via periodate oxidation of this terminal ribose followed by reduction and coupling through a N-morpholine ring. Oligonucleotide-poly(L-lysine) conjugates are described in European Patent application 87109348.0. In this instance the lysine residue was coupled to a 5′ or 3′ phosphate of the 5′ or 3′ terminal nucleotide of the oligonucleotide. A disulfide linkage has also been utilized at the 3′ terminus of an oligonucleotide to link a peptide to the oligonucleotide (Corey et al.,
Science,
1987, 238, 1401; Zuckermann, et al.,
J. Am. Chem. Soc.,
1988, 110, 1614; and Corey et al.,
J. Am. Chem. Soc.,
1989, 111, 8524).
Nelson et al. (
Nuc. Acids Res.,
1989, 17, 7187) describe a linking reagent for attaching biotin to the 3′-terminus of an oligonucleotide. This reagent, N-Fmoc-O-DMT-3-amino-1,2-propanediol is now commercially available from Clontech Laboratories (Palo Alto, Calif.) under the name 3′-Amine on. It is also commercially available under the name 3′-Amino-Modifier reagent from Glen Research Corporation (Sterling, Va.). This reagent was also utilized to link a peptide to an oligonucleotide as reported by Judy et al. (
Tetrahedron Letters,
1991, 32, 879). A similar commercial reagent (actually a series of such linkers having various lengths of polymethylene connectors) for linking to the 5′-terminus of an oligonucleotide is 5′-Amino-Modifier C6. These reagents are available from Glen Research Corporation (Sterling, Va.). These compounds or similar ones were utilized by Krieg et al. (
Antisense Research and Development,
1991, 1, 161) to link fluorescein to the 5′-terminus of an oligonucleotide. Other compounds of interest have also been linked to the 3′-terminus of an oligonucleotide. Asseline et al. (
Proc. Natl. Acad. Sci. USA,
1984, 81, 3297) described linking acridine on the 3′-terminal phosphate group of an poly (Tp) oligonucleotide via a polymethylene linkage. Haralambidis et al. (
Tetrahedron Letters,
1987, 28, 5199) report building a peptide on a solid state support and then linking an oligonucleotide to that peptide via the 3′ hydroxyl group of the 3′ terminal nucleotide of the oligonucleotide. Chollet (
Nucleosides
&
Nucleotides,
1990, 9, 957) attached an Aminolink 2 (Applied Biosystems, Foster City, Calif.) to the 5′ terminal phosphate of an oligonucleotide. Chollet then used the bifunctional linking group SMPB (Pierce Chemical Co., Rockford, Ill.) to link an interleukin protein to the oligonucleotide.
An EDTA iron complex has been linked to the 5 position of a pyrimidine nucleoside as reported by Dreyer et al. (
Proc. Natl. Acad. Sci. USA,
1985, 82, 968). Fluorescein has been linked to an oligonucleotide in the same manner as reported by Haralambidis, et al. (
Nucleic Acid Research,
1987, 15, 4857) and biotin in the same manner as described in PCT application PCT/US/02198. Fluorescein, biotin and pyrene were also linked in the same manner as reported by Telser et al. (
J. Am. Chem. Soc.,
1989, 111, 6966). A commercial reagent, Amino-Modifier-dT, from Glen Research Corporation (Sterling, Va.) can be utilized to introduce pyrimidine nucleotides bearing similar linking groups into oligonucleotides.
Cholic acid linked to EDTA for use in radioscintigraphic imaging studies was reported by Betebenner et al. (
Bioconjugate Chem.,
1991, 2, 117); however, it is not known to link cholic acid to nucleosides, nucleotides or oligonucleotides.
Despite these efforts and other research in the field, it is not known in the art to use lipophilic conjugation to alter the pharmacodynamic properties of an antisense com

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compositions and methods for enhanced biostability and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compositions and methods for enhanced biostability and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions and methods for enhanced biostability and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3364849

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.