Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving hydrolase
Reexamination Certificate
2002-03-25
2004-06-01
Saidha, Tekchand (Department: 1652)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving hydrolase
C435S015000, C435S016000, C435S017000, C435S018000, C435S019000, C435S023000, C435S024000, C435S196000
Reexamination Certificate
active
06743599
ABSTRACT:
FIELD OF INVENTION
This invention is related to the use of adenosine diphosphate (ADP) or phosphate in assays for identifing compounds which bind to or modulate the binding characteristics or biological activity of a protein.
BACKGROUND OF THE INVENTION
Drugs and other compounds intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease in man or other animal or for use in the agricultural arena, have made a significant impact on the practice of modem medicine and on the agricultural arena. In some cases, such as in the development of vaccines, drugs have essentially eradicated once untreatable diseases. In the case of the agriculture, compounds have been developed which both extend the life and/or volume of produce as well as kill unwanted plants where desirable. Therefore, the development of these compounds is of great interest.
Many useful compounds modulate the physical interaction of proteins. Traditionally, these protein-protein interactions have been evaluated using biochemical techniques, including chemical cross-linking, co-immunoprecipitation, co-fractionation and co-purification. Recently genetic systems have been invented to detect protein-protein interactions. The first work was done in yeast systems, and was termed the “yeast two-hybrid” system. The basic system requires a protein-protein interaction in order to turn on transcription of a reporter gene. Subsequent work was done in mammalian cells. See Fields et al., Nature 340:245 (1989); Vasavada et al., PNAS USA 88:10686 (1991); Fearon et al., PNAS USA 89:7958 (1992); Dang et al., Mol. Cell. Biol. 11:954 (1991); Chien et al., PNAS USA 88:9578 (1991); and U.S. Pat. Nos. 5,283,173, 5,667,973, 5,468,614, 5,525,490, and 5,637,463.
In another approach to drug discovery, studies are designed to determine the biological activity of a protein. For example, the conditions such as the specific substrate or stimulator required for an enzymatic reaction are investigated. Moreover, there are a number of studies designed specifically for aide in the detection step in these assays. For example, one study discloses a spectrophotometric assay for inorganic phosphate (Pi) to probe the kinetics of Pi release from biological systems such as GTPases and ATPases. Webb, PNAS, 89:4884-4887 (1992). Another study reports on an enzymatic assay of inorganic phosphate in serum using nucleoside phosphorylase and xanthine oxidase. Ungerer, et al., Elsevier Clinica Chimica Act, 223:149-157 (1993). A continuous spectrophotometric assay for aspartate transcarbamylase and ATPases is reported on in Rieger, et al., Anal. Biochem., 246:86-95 (1997). There is also a study which reports on the measurement of inorganic phosphate release using fluorescent probes and its application to actomysin subfragment 1 ATPase. Brune, et al., Biochem., 33:8262-8271 (1994). U.S. Pat. No. 4,923,796 discloses a method for quantitative enzymatic determination of ADP. Microtubule-stimulated adenosine triphosphate (ATP) hydrolysis by kinesin is discussed in Hackney, J. Biol. Chem., 269(23):16508-16511 (1994). Furthermore, enzymatic fluorimetry and fluorimetric assays for ATPase activity are reported on in Greengard, Nature, 178:632-634 (1956) and Utpal and Siddhrtha, Biochem. J., 266:611-614 (1990), respectively.
In a different approach, modulators of an enzymatic reaction are investigated, wherein the conditions which allow the enzymatic reaction to occur are already known. For example, U.S. Pat. No. 5,759,795 discloses an assay for identifying an inhibitor of a Hepatitis C Virus NS3 protein ATPase which involves a luciferase reaction. Luciferase reactions are known in the art. In the case of an ATPase inhibitor, the presence of an ATPase inhibitor is indicated when ATP is available to drive the oxidation of luciferon by luciferase. This approach requires ATP but does not re-generate ATP.
Thus, while efforts have been made toward drug discovery, more efficient means are desirable. In particular, there is a need for an efficient system which can distinguish between a compound directly binding to a second component, or whether the compound modulates the binding between two other components, or whether the compound modulates the biological activity of a known enzymatic reaction. Accordingly, it is an object of the present invention to provide methods of identifying compounds which either bind to or which modulate the binding characteristics or the biological activity of a target protein. It is also an object to provide compositions for use in the assays provided herein.
SUMMARY OF THE INVENTION
The present invention provides methods which identify candidate agents that bind to a a protein or act as a modulator of the binding characteristics or biological activity of a protein. In one embodiment, the method is performed in plurality simultaneously. For example, the method can be performed at the same time on multiple assay mixtures in a multi-well screening plate as further described below. Furthermore, in a preferred embodiment, fluorescence or absorbance readouts are utilized to determine enzymatic activity. Thus, in one aspect, the invention provides a high throughput screening system.
In one embodiment, the present invention provides a method of identifying a candidate agent as a modulator of the activity of a target protein. The method comprises adding a candidate agent to a mixture comprising a target protein which directly or indirectly produces ADP or phosphate under conditions which normally allow the production of ADP or phosphate. The method further comprises subjecting the mixture to an enzymatic reaction which uses said ADP or phosphate as a substrate under conditions which normally allow the ADP or phosphate to be utilized and determining the level of activity of the enzymatic reaction. A change in the level between the presence and absence of the candidate agent indicates a modulator of the target protein.
In one aspect, the target protein indirectly produces the ADP or phosphate by producing a substrate for a reaction which produces the ADP or phosphate. In another aspect, the target protein indirectly produces phosphate or ADP or phosphate by regulating an enzyme which produces ADP or phosphate. In yet a further aspect, the target protein directly produces phosphate or ADP.
In another aspect, the invention provides a method of identifying a candidate agent as a modulator of the activity of a target protein wherein the target protein uses ADP or phosphate directly or indirectly. The method comprises adding a candidate agent to a mixture comprising the target protein under conditions which normally allow the utilization of ADP or phosphate. The method further comprises determining the level of utilization wherein a change in the level between the presence and absence of the candidate agent indicates a modulator of the target protein.
In another embodiment provided herein is a method for identifying whether any two target proteins interact. The method comprises providing a first target chimera comprising a functional molecular motor binding domain and a first target protein. The method further comprises providing a second target chimera comprising a functional microtubule stimulated ATPase domain and a second target protein. Additionally, the method comprises combining the first and second target chimeras under conditions which normally allow activity of a motor protein which comprises a molecular motor binding domain and a microtubule stimulated ATPase domain, wherein an increase in motor protein activity indicates interaction between the two target proteins.
In a further embodiment a method is provided for identifying whether a candidate agent is a modulator of at least one of any two target proteins. The method comprises providing a first target chimera comprising a functional molecular motor binding domain and a first target protein and further providing a second target chimera comprising a functional microtubule stimulated ATPase domain and a second target protein. Additionally, the method comprises combining the first and s
Finer Jeffrey T.
Malik Fady
Sakowicz Roman
Shumate Christopher
Wood Kenneth
Cytokinetics Inc.
Saidha Tekchand
Stevens Lauren L.
LandOfFree
Compositions and assays utilizing ADP or phosphate for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Compositions and assays utilizing ADP or phosphate for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions and assays utilizing ADP or phosphate for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3298914