Composition that can be used as a refrigerant

Compositions – Vaporization – or expansion – refrigeration or heat or energy... – With low-volatile solvent or absorbent

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S068000, C252S067000, C252S364000, C252S002000, C252S008000, C062S112000, C062S114000, C510S410000, C510S412000

Reexamination Certificate

active

06511610

ABSTRACT:

DESCRIPTION
1. Field of the Invention
The subject of the present invention is a composition comprising pentafluoroethane, 1,1,1,2-tetrafluoroethane and dimethyl ether, its use in refrigeration and/or air conditioning and a heat transfer system containing it.
2. Background of the Invention
Heat transfer systems include, for example, refrigerators, heat pumps and air conditioning systems.
In such devices, a refrigerant of suitable boiling point is evaporated at low pressure, taking heat from a first surrounding medium (or zone). The vapor thus formed is then compressed using a compressor and then passes into a condenser in which it is converted to the liquid state, giving rise to a release of heat into a second surrounding zone. The liquid thus condensed then flows into a pressure reducer, at the outlet of which it turns into a biphasic mixture of liquid and vapor which is finally introduced into the evaporator where the liquid is once again evaporated at low pressure, which completes the cycle.
The mechanical energy required to compress the vapor and to circulate the fluid is provided by an electric motor or by an internal combustion engine. As in any mechanical device, it is necessary for the moving parts to be suitably lubricated. The lubricants used form an integral part of the heat transfer system and govern both its performance and its life through the long-term maintaining of suitable lubrication.
In particular, the refrigerant which, each time it passes through the compressor, comes into contact with the lubricant present on its moving parts, tends to carry off a certain amount of lubricant which accompanies the refrigerant in its cycle and therefore finds itself in the evaporator. Now, the latter is generally brought to a low temperature, at which the viscosity of the lubricant is particularly high, which means that there is a risk that this lubricant will accumulate in the evaporator and therefore no longer be able to return to the compressor, this return being termed, in this current text, the “return of oil”.
Hence, if this return of oil is insufficient, the amount of lubricant present on the moving parts of the compressor cannot be kept constant over time, which therefore impacts on the suitable operation of the said compressor and on its life.
It is therefore necessary to use a refrigerant/oil pairing which is perfectly compatible, particularly as regards the return of oil.
R-22 or monochlorodifluoromethane is a refrigerant of the HCFC (HydroChloroFluoroCarbon) type widely used in heat transfer applications, including fixed air conditioning, commercial and industrial refrigeration and heat pumps. There are currently numerous heat transfer systems designed for R-22; the lubricants used, because they are suited to R-22, particularly as regards the return of oil, are either mineral oils or alkylbenzene oils.
Although R-22 has a very low ozone depletion potential (hereafter known as ODP), its use is, however, subject to restrictions also, and new products based on HFCs (HydroFluoroCarbons) have been developed, these being particularly beneficial in terms of the stratospheric ozone layer, because HFCs have a zero ODP.
Amongst these products, R-407C has, in particular, been developed to replace R-22 in air conditioning applications. This product is a mixture combining R-32, R-125, R-134a in the proportions of 23/25/52% by weight. R-32 is the conventional trade jargon for difluoromethane, R-125 is pentafluoroethane, and R-134a denotes 1,1,1,2-tetrafluoroethane. R-407C has thermodynamic properties which are very similar to those of R-22. As a result, R-407C can be used in old systems designed to run on R-22, thus allowing an HCFC fluid to be replaced by an HFC fluid which is safer with regard to the stratospheric ozone layer, in the context of a process of converting these old systems. The thermodynamic properties concerned are well known to those skilled in the art and are, in particular, the refrigeration capacity, the coefficient of performance (or COP), the condensation pressure, the evaporation pressure and the distillation range (or glide).
The refrigeration capacity represents the refrigeration power available by virtue of the refrigerant, for a given compressor. To replace R-22 it is essential to have a fluid whose refrigeration capacity is high and close to that of R-22.
The COP expresses the ratio of the refrigerating energy delivered to the energy applied to the compressor for compressing the refrigerant in the vapor state. Within the context of substituting R-22, a COP value for the fluid which is below that of R-22 is suitable if one accepts that the electrical power consumption of the installation will increase.
Finally, the condensation pressure and the evaporation pressure indicate the stress exerted by the fluid on the corresponding mechanical parts of the refrigerating circuit. A fluid capable of replacing R-22 in a refrigeration system designed for the latter must not have condensation and evaporation pressures significantly higher than those of R-22.
Apart from exceptions (azeotropes), mixtures of fluids do not boil at a constant temperature for a given pressure, unlike pure bodies. The difference in temperature between the start and the end of boiling, also known as the glide, governs the operation of the exchangers. In the context of substituting R-22, a low glide value close to that of R-407C is desirable.
These new HFC-based products, particularly R-407C, are not, however, compatible with the mineral oils or alkylbenzene oils used in systems operating on R-22 as far as lubricating the mechanical parts is concerned, particularly because of an insufficient return of oil.
They thus require the use of new oils, of the Polyol Ester (POE) or Polyalkylene Glycol (PAG) type.
The replacement of R-22 in the numerous existing heat transfer systems designed to operate on that fluid, by a fluid which has similar thermodynamic performance and an ozone depletion potential of zero therefore entails, apart from replacing the refrigerant, changing the lubricating oil, and possibly even changing certain components of the refrigeration circuit such as the connecting pipework and seals. Such a conversion procedure is practically impossible with certain widespread compression hardware such as the sealed compressor. In any event, it is a lengthy, painstaking and expensive operation especially since in order to eliminate all of the old oil, the system needs to be flushed several times with the new oil.
European Patent application EP 0638623 mentions an almost azeotropic composition consisting of 5 to 20% of R-125, 75 to 90% of R-134a and 1 to 5% of dimethyl ether (hereafter DME). This composition is mentioned as being usable as a substitute for R-502 which is a mixture of 48.8% of R-22 (CHClF
2
) and 51.2% of R-155 (CClF
2
CF
3
). It is not, however, suitable for substituting for R-22, particularly in air conditioning.
It is an object of the present invention to overcome these various drawbacks.
DETAILED DESCRIPTION OF INVENTION
The subject of the invention is, first and foremost, a composition consisting essentially of 55 to 94% R-125, 2.5 to 35% of R-134a and 3.5 to 25% of DME. A composition consisting essentially of 60 to 85% of R-125, 10 of 32% of R-134a, and 5 to 8% of DME is preferred. The percentages given in this text refer, unless otherwise stipulated, to percentages by weight.
This composition can be substituted for R-22 in its various applications, particularly for air conditioning. In addition it advantageously has thermodynamic performance which allows it to be substituted, without disadvantage, for R-22 in a heat transfer installation designed to run on that fluid, particularly allowing a return of oil far better than that of R-407C when the oil used is precisely a mineral oil or an alkylbenzene oil. It is therefore not necessary, in the procedure of converting existing hardware operating on R-22, to change the oil, unlike the situation which arises when R-22 is replaced by R-407C.
The following specific compositions are particularly advantageous:
R-125: 63.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composition that can be used as a refrigerant does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composition that can be used as a refrigerant, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition that can be used as a refrigerant will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3046413

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.