Earth boring – well treating – and oil field chemistry – Earth boring – Contains organic component
Reexamination Certificate
2001-05-31
2004-10-19
Tucker, Philip C. (Department: 1712)
Earth boring, well treating, and oil field chemistry
Earth boring
Contains organic component
C507S117000, C507S107000, C507S108000, C507S111000, C507S113000, C507S119000, C507S126000, C507S219000, C507S221000, C507S206000, C507S207000, C507S212000, C507S215000, C507S224000, C507S232000, C507S903000
Reexamination Certificate
active
06806232
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates, generally, to a composition of drilling fluids designed to decrease seepage and whole mud loss during well-working operations.
2. Description of Related Art
In the rotary drilling of wells, such as for oil and gas exploration, a mechanical means (triplex or duplex pump) of circulating drilling fluids is required in order to force the drilling fluids through a column of mechanically connected drilling pipe known as the drill string. A drilling bit or other well working tool connected to the lower end of the drill string, in combination with the mechanically induced rotating action of said drill string, drill bit, and/or other well working tool, causes the subterranean formation to be drilled.
These drilling fluids, known collectively as “mud” in the industry, perform specific required functions. These include, but are not limited to, (1) removing the drilled “cuttings” of subterranean formation from the well bore (“hole”); (2) controlling subsurface pressures; (3) cooling and lubricating the drill string, drill bit and/or drilling tools; (4) forming a thin and impermeable wall cake; (5) carrying information about the subterranean formations being penetrated; (6) suspending drilled cuttings and density materials when circulation is stopped; and (7) bearing a portion of the weight of the drill string through buoyancy.
These drilling fluids have a base of, but are not necessarily limited to, oil or water of varying salinity. Water-based fluids may contain, for example, bentonetic clay, polymers, materials to alter density, and other additives mixed and/or dispersed in the water. Oil-based fluids (diesel or synthetic) may contain, for example, suspending agents or materials (generally organophilic clays), wetting agents, emulsifiers, stabilizing agents, filtration agents, density agents, and other additives suspended or dispersed in diesel or synthetic oil and like oleaginous mediums.
The characteristics of the drilled geologic strata and, to some extent, the drilling apparatus, determine the physical parameters required of a drilling fluid. For example, while drilling through a high pressure subterranean formation layer, e.g., a gas formation, the density of the drilling fluids must be increased such that the hydrostatic head of the fluid column is greater than, or at balance with, the downhole pressure of the stratum to prevent gas or oil leakage into the annular space surrounding the drill string, thus lowering the chances of a “blowout” situation.
The particle size in most common drilling fluids is, as a general rule, from about 0.5 to 5.0 microns in size, with a small percentage (5% or less) of the particles being as large as 44 microns (325 mesh). The particles above this range are generally removed in the process of re-conditioning and separation of the rock cuttings prior to the re-circulation of the drilling fluid. Due to the constant cleaning, conditioning and removal of larger particles, drilling fluids as they are normally used can bridge only small fissures (generally less than 0.002 inches) within the subterranean formations.
In strata that are porous in nature, having openings or fissures larger that about 0.001 to 0.002 inches, as well as having a low subterranean formation pressure, another commonly known problem exists. Some of the drilling fluid, because its hydrostatic column head pressure is greater than the subterranean formation pressure, migrates out into the porous layers rather than completing its circuit journey back to the earth's surface.
This phenomenon makes it extremely desirable to be able to control the deposition of a low-permeability filter cake (wall cake) onto the sides of the well bore by controlling the properties of the drilling fluid. A wall cake results when the drilling fluid exerts a greater pressure than that of the subterranean formation. The initial drilling fluid that inevitably enters the subterranean formation as the wall cake is being deposited is known as spurt loss. Liquid that enter the subterranean formation after the cake has been deposited is known as drilling fluid filtrate.
If the fluids enter the subterranean formation in significant quantities, it is known as whole mud loss. This whole mud loss refers to the whole mud and includes but is not necessarily limited to, the filtrate loss and the loss of fluids in greater quantities than that considered to be fluid or seepage loss, due to such things as a fracture or vulgular subterranean formation.
In some situations, the whole mud loss may be so extreme that all well-working fluids pumped into the well bore are lost completely to subterranean sand or a vulgular formation. Such condition is known as severe or total loss to those familiar in the art.
The filtration properties required for a successful completion of a well depend on the nature of the subterranean formation being drilled and on the type of drilling fluid used. For example, in water sensitive formations, diesel or synthetic oil base drilling fluids provide superior hole stabilization when the salinity of the aqueous phase of the drilling fluid is adjusted to prevent migration of water from the drilling fluid to the subterranean formations. The filtration must be minimized through the entire drilling process, especially when using diesel or synthetic oil base drilling fluids, due to the high cost of these fluids.
Over the years, many materials have been used for in an attempt to decrease and control the filtration rate of these drilling fluids. For example, starch and starch derivatives, cellulose derivatives, humates, lignin derivatives, and various clay materials have all been used in water base drilling fluids. Similarly, asphaltic materials, organophilic clays, organophilic humates, organic lignosulfonates and the like have been used in diesel and synthetic oil base drilling fluids.
All things considered, there are very few materials effective in decreasing spurt loss or seepage of whole mud to the subterranean formation. Some of the many materials which have been used include cottonseed hulls and lentils, ground corn cobs, rice hulls, peanut shells, ground sheet mica, shells of various nuts, coal, asbestos, bagasse, paper and various particulate wood products. Accordingly, there is a need for an effective seepage and spurt control loss agent, and additionally a control agent for total and severe whole mud loss to the subterranean formation.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a well-working composition sufficient to seal fluid loss through permeable subterranean sand formations of as small as 1 Darcey to those formations that loose whole mud at a rate of approximately 100 barrels (42-gallon oilfield barrel) or more per hour.
It is another object of the present invention to provide a material additive that is capable of bridging and sealing permeable subterranean formations better than materials currently utilized for this purpose.
It is another object of the present invention to provide well-working compositions having a low seepage or spurt loss.
It is another object of this invention to provide a method of decreasing the seepage or spurt loss during a well working operation.
It is yet another object of the present invention to provide the foregoing functionality in water base, oil base, and synthetic oil base fluids.
These, and other objects of this invention will appear to one skilled in the art as the description thereof proceeds.
The novelty of this invention is a new and unique particulate material to be added to bore hole fluids, also known as well working fluids or drilling fluids, to minimize and stop whole mud loss to permeable formations encountered while drilling subterranean formations.
The particulate, ground elastomeric crumb rubber sealant material, exhibits resiliency and compressibility that differentiate it from previous and currently
Kean, Miller, Hawthorne, D'Armond, McCowan & Jarman LLP
Primeaux Russel O.
Tucker Philip C.
LandOfFree
Composition of drilling fluids comprising ground elastomeric... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Composition of drilling fluids comprising ground elastomeric..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition of drilling fluids comprising ground elastomeric... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3279782