Composition for protecting skin from damaging effects of...

Drug – bio-affecting and body treating compositions – Topical sun or radiation screening – or tanning preparations

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S060000, C514S772000, C514S772300, C514S772400, C514S844000, C514S847000, C514S937000, C514S938000

Reexamination Certificate

active

06235272

ABSTRACT:

FIELD OF THE INVENTION
This invention concerns a topical antioxidant composition for the protection and treatment of human skin, particularly skin that is exposed to harmful ultraviolet radiation.
BACKGROUND OF THE INVENTION
The ultraviolet (UV) wavelengths of sunlight can cause sunburn (erythema) and blistering (edema). Exposure to ultraviolet light can also cause the skin to feel dry and taut in moderate doses, and to peel if exposed to higher doses. These acute, or short term, effects are readily perceptible. However, there are also more subtle acute effects that are not as readily discernable, such as photo-immunosuppression, cross-linking of deoxyribonucleic acid (DNA), formation of sunburn cells, and loss of Langerhans cells. Even more serious long term effects can occur, such as skin cancer and premature aging of the skin.
Human skin can be protected from some of these environmental effects. Moisturizers can readily reverse the appearance of dryness regardless of whether it results from low humidity conditions or UV light, and relieve the tautness of the skin caused by UV light exposure. These products either attract moisture from the environment to the skin's surface, or reduce the amount of moisture in the skin that can escape into the environment. These products also add needed moisture to the skin from the formulation itself, and add a layer of emollients on the skin surface to leave it softer and more supple.
Sunscreen products are known to protect the skin from some of the harmful effects of ultraviolet light exposure. These products contain molecules that absorb the harmful wavelengths of ultraviolet light before they can reach the skin. The absorbed light is converted to heat and rapidly dissipated to the skin and environment, which allows these molecules to revert to a lower energy state, and subsequently absorb another photon of light. In this manner, sunscreen agents can absorb numerous photons of ultraviolet light in a relatively short period of time. By absorbing the harmful wavelengths of light, sunscreen products prevent many of the acute and chronic effects caused by ultraviolet light.
However, sunscreen products are not perfect in their mode of action. There is no single sunscreen agent that is capable of absorbing all of the harmful wavelengths striking the skin. Higher Sun Protection Factor (SPF) formulations address this problem by including a combination of sunscreen agents in the formulation. However, even when using a combination of sunscreen agents, these products do not provide complete protection, particularly from the longer ultraviolet wavelengths. Although these longer wavelengths do not readily elicit many of the acute damaging effects commonly attributed to ultraviolet light exposure, recent research indicates that these wavelengths can create free radicals in the skin. These free radicals may be responsible for the premature aging of the skin commonly linked to ultraviolet light exposure.
According to the free radical theory of premature aging of the skin, ultraviolet light can produce reactive oxygen species (ROS) that damage the skin. ROS are a collection of reactive free radicals produced from the oxygen molecule, and include singlet oxygen, the superoxide radical, hydrogen peroxide, and the hydroxyl radical, as well as the reaction products produced by these free radicals. Due to their reactivity, ROS relatively indiscriminately react with other molecules, and generate a cascade of harmful free radical reactions in the skin.
The skin possesses defense mechanisms against the generation of ROS. These defenses include the presence of enzymes such as superoxide dismutase, catalase, glutathione transferase, glutathione peroxidase and glutathione reductase, as well as antioxidants such as tocopherols, ubiquinone, ubiquinol, ascorbic acid and dehydroascorbic acid. Unfortunately, ultraviolet light entering the skin can easily overwhelm these defense systems, such that the amount of superoxide dismutase and glutathione transferase in the skin declines significantly upon irradiation with solar simulated ultraviolet light. Simultaneous with the loss of these reducing enzymes, there is a dramatic increase in conjugated double bonds formed in the skin from the linoleates present in cell membranes. There is also an increase in thiobarbituric acid reactive substances present in the skin, which represent a collection of molecules that are formed from ROS.
Prostaglandins are a mediator of inflammation that is believed to be produced by skin damage, and ROS may create conditions that promote the formation of prostaglandins and sunburn cells. These mediators of inflammation are formed from arachidonic acid upon oxidation via the lipoxygenase pathway. Although this oxidation is normally enzymatically controlled, the increase in prostaglandins in skin after ultraviolet irradiation may also be a result of the generation of ROS. Additionally, there are other messenger systems in skin cells that could increase the amount of prostaglandins that are activated by reactions involving ROS.
Sunburn cells are prematurely dead keratinocytes that are produced in skin as a result of ultraviolet light exposure. The contribution of ROS to the formation of sunburn cells has not been adequately researched. However, given the fact that ROS produce negative effects upon molecules in the cell membranes as well as in proteins including enzymes that control most cellular activity, it has been suggested that ROS could play a potentially important role in the formation of sunburn cells.
Since sunscreens are unable to completely protect the skin against the adverse effects of ultraviolet radiation, alternative modes of protection have been proposed. Vitamins, such as Vitamin E acetate, have been shown to make the skin softer and smoother after topical application, which can offset some of the damaging effects of the sun. Vitamin A palmitate has been shown to create smoother skin and help enhance the process of cellular turnover. This enhancement rids the skin of the outermost dead layer of skin by bringing more youthful appearing skin cells to the surface. Other materials, such as hyaluronic acid and pyrrolidone carboxylic acid (PCA), have also been used for their ability to enhance the moisture binding capacity of the skin and therefore lead to smoother, softer skin.
Compositions that incorporate Vitamins A or E, or their derivatives, in sunscreen compositions, are shown in U.S. Pat. Nos. 4,454,112; 5,532,805; and 5,378,461. The use of Vitamin C in combination with Vitamins A, E, B and other agents in a skin protectant composition, is described in U.S. Pat. No. 4,938,960. An antioxidant preparation that is said to protect the skin against harmful ultraviolet radiation is disclosed in U.S. Pat. No. 5,607,921, and contains Vitamin C, in combination with Vitamins A and E, and monosaccharide or amide precursors. Sunscreen compositions containing panthenol and other agents are disclosed in U.S. Pat. Nos. RE 33,845; 5,505,935; 5,445,823; and 5,573,754. The antioxidant effect of superoxide dismutase when externally applied to the skin to protect against the effects of ultraviolet radiation is also described in U.S. Pat. No. 5,601,806.
In spite of advances in recent years in the protection of skin from harmful ultraviolet radiation, the epidemic of skin cancer and skin damage from the effects of this radiation has continued unabated. The loss of portions of the ozone layer from environmental pollution is believed to have contributed to an increase in ambient ultraviolet radiation that reaches exposed skin. Many skin protection preparations that could prevent sun damage have an unacceptable odor or texture that discourages their more frequent use, and many of the available skin protectants do not sufficiently protect the skin from these many mechanisms of injury. Hence there is a significant public health need for commercially acceptable or improved preparations that can be topically applied to human and animal skin, to offset the harmful effects of ultraviolet radiation.
It is the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composition for protecting skin from damaging effects of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composition for protecting skin from damaging effects of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition for protecting skin from damaging effects of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2517007

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.