Composition for introducing nucleic acid complexes into...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S069100, C435S091400, C435S242000, C435S252300, C435S267000, C536S023500, C536S024500, C424S093100, C424S093200, C424S093600, C424S520000

Reexamination Certificate

active

06274322

ABSTRACT:

FIELD OF THE INVENTION
The invention is in the field of DNA technology. In particular, the invention relates to new compositions which can be used for the introduction of nucleic acids into higher eucaryotic cells.
BACKGROUND OF THE INVENTION
There is a need for an efficient system for introducing nucleic acid into living cells particularly in gene therapy. Genes are transferred into cells in order to achieve in vivo synthesis of therapeutically effective genetic products, e.g. in order to replace the defective gene in the case of a genetic defect. “Conventional” gene therapy is based on the principle of achieving a lasting cure by a single treatment. However, there is also a need for methods of treatment in which the therapeutically effective DNA (or mRNA) is administered like a drug (“gene therapeutic agent”) once or repeatedly as necessary. Examples of genetically caused diseases in which gene therapy represents a promising approach are hemophilia, beta-thalassaemia and “Severe Combined Immune Deficiency” (SCID), a syndrome caused by the genetically induced absence of the enzyme adenosine deaminase. Other possible applications are in immune regulation, in which humoral or intracellular immunity is achieved by the administration of functional nucleic acid which codes for a secreted protein antigen or for a non-secreted protein antigen, which may be regarded as a vaccination. Other examples of genetic defects in which a nucleic acid which codes for the defective gene can be administered, e.g. in a form individually tailored to the particular requirement, include muscular dystrophy (dystrophin gene), cystic fibrosis (cystic fibrosis transmembrane conductance regulator gene), hypercholesterolemia (LDL receptor gene). Gene therapy methods are also potentially of use when hormones, growth factors or proteins with a cytotoxic or immune-modulating activity are to be synthesized in the body.
Gene therapy also appears promising for the treatment of cancer by administering so-called “cancer vaccines”. In order to increase the immunogenicity of tumor cells, they are altered to render them either more antigenic or to make them produce certain immune modulating substances, e.g. cytokines, in order to trigger an immune response. This is accomplished by transfecting the cells with DNA coding for a cytokine, e.g. IL-2, IL-4, IFN gamma, TNF alpha. To date, most gene transfer into autologous tumor cells has been accomplished via retroviral vectors.
The technologies which are hitherto most advanced for the administration of nucleic acids in gene therapy, make use of retroviral systems for transferring genes into the cells (Wilson et al., 1990, Kasid et al., 1990). However, the use of retroviruses is problematic because it brings, at least to a small degree, the danger of side effects such as infection with the virus (by recombination with endogenous viruses or contamination with helper viruses and possible subsequent mutation into the pathogenic form) or the formation of cancer. Moreover, the stable transformation of the somatic cells in the patient, as achieved with retroviruses, is not desirable in every case because it might make the treatment difficult to reverse, e.g. if side effects occur. Moreover, with this type of therapy, it is difficult to obtain a high enough titer to infect enough cells.
Nucleic acids as therapeutically effective substances are also used to inhibit specific cell functions, e.g. antisense RNAs and DNAs have proved effective in the selective inhibition of specific gene sequences. Their mode of activity enables them to be used as therapeutic agents for blocking the expression of certain genes (such as deregulated oncogenes or viral genes) in vivo. It has already been shown that short antisense oligonucleotides can be imported into cells and exert their inhibiting effect therein (Zamecnik et al., 1986), even if their intracellular concentration is low, caused, inter alia, by their restricted uptake by the cell membrane as a result of the strong negative charge of the nucleic acids. Another approach to the selective inhibition of genes is the use of ribozymes. Again there is the need to ensure the highest possible concentration of active ribozymes in the cell, transportation into the cell being one of the limiting factors.
Application of gene therapy for achieving intracellular immunity involves transduction of genes which protect against viruses, so-called “protective genes”, e.g. transdominant mutants of genes coding for viral proteins, or DNA molecules coding for so-called RNA decoys.
There is consequently a need for methods of enabling the transfer and expression of DNA into the cell.
Various techniques are known for gene transformation of mammalian cells in vitro, but their use in vivo is limited (these include the introduction of DNA by means of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran or the calcium phosphate precipitation method).
In recent times, recombinant viral vectors have been developed to bring about the transfer of genes by using the efficient entry mechanisms of their parent viruses, this strategy was used in the construction of recombinant retroviral and adenoviral vectors in order to achieve a highly efficient gene transfer in vitro and in vivo (Berkner, 1988). Despite their efficiency, these vectors are subject to restrictions in terms of the size and construction of the DNA which is transferred. Furthermore, these agents represent safety risks in view of the transfer of the viable viral gene elements of the original virus.
In order to circumvent these restrictions, alternative strategies for gene transfer have been developed, based on mechanisms which the cell uses for the transfer of macromolecules. One example of this is the transfer of genes into the cell via the extremely efficient route of receptor-mediated endocytosis (Wu and Wu, 1987, Wagner et al., 1990 and EP-A1 0388 758, the disclosure of which is hereby referred to). This approach uses bifunctional molecular conjugates which have a DNA binding domain and a domain with specificity for a cell surface receptor (Wu and Wu, 1987, Wagner et al., 1990). If the recognition domain is recognized by the cell surface receptor, the conjugate is internalized by the route of receptor-mediated endocytosis, in which the DNA bound to the conjugate is also transferred. Using this method, it was possible to achieve gene transfer rates at least as good as those achieved with the conventional methods (Zenke et al., 1990). Furthermore, it has been shown that the activity of a nucleic acid, e.g. the inhibitory effect of a ribozyme, is not impaired by the transport system.
The PCT application WO 91/17773 relates to a system for transporting nucleic acids with a specific activity for T-cells. This system makes use of cell surface proteins of the T-cell lineage, e.g. CD4, the receptor used by the HIV virus. The nucleic acid to be imported is complexed with a protein-polycation conjugate, the protein component of which, i.e. the recognition domain, is a protein capable of binding to the T-cell surface protein, e.g. CD4, and cells which express this surface protein are brought into contact with the resulting protein-polycation
ucleic acid complexes. It has been shown that DNA transported into the cell by means of this system is expressed in the cell.
One feature common to both inventions is that they use specific cell functions to enable or facilitate the transfer of nucleic acid into the cell. In both cases, the uptake mechanisms take place with the participation of recognition domains which are termed “internalizing factors” within the scope of the present invention. This term denotes ligands which, being cell-type-specific in the narrower or wider sense, bind to the cell surface and are internalized, possibly with the cooperation of other factors (e.g. cell surface proteins). (In the case of the two inventions mentioned above, the internalizing factor is transferrin or a protein which binds to a T-cell surface antigen, e.g. an anti-CD4 antibody). The internalizing factor is conjugat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composition for introducing nucleic acid complexes into... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composition for introducing nucleic acid complexes into..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition for introducing nucleic acid complexes into... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2484428

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.