Active solid-state devices (e.g. – transistors – solid-state diode – Responsive to non-electrical signal – Electromagnetic or particle radiation
Patent
1996-07-11
1997-09-16
Jackson, Jerome
Active solid-state devices (e.g., transistors, solid-state diode
Responsive to non-electrical signal
Electromagnetic or particle radiation
257458, H01L 3100
Patent
active
056683952
ABSTRACT:
An intermetallic compound semiconductor thin film comprises thin film made of either InSb or GaAs heterostructure on a silicon substrate. Preferably, the thin film is grown by a Molecular Beam Epitaxy method.
REFERENCES:
patent: 3364084 (1968-01-01), Reubrwein
patent: 4207122 (1980-06-01), Goodman
patent: 4368098 (1983-01-01), Manasevit
patent: 4404265 (1983-09-01), Manasevit
patent: 4720309 (1988-01-01), Deveaud et al.
patent: 4793872 (1988-12-01), Meunier et al.
patent: 4874438 (1989-10-01), Oshita et al.
patent: 4897149 (1990-01-01), Suzuki et al.
patent: 4902356 (1990-02-01), Noguchi et al.
patent: 4952811 (1990-08-01), Elliott
patent: 5232869 (1993-08-01), Frigo et al.
patent: 5252142 (1993-10-01), Matsuyama et al.
patent: 5304824 (1994-04-01), Tonai
Wickenden et al., Growth of Epitaxial Layers of Gallium Nitride on Silicon Carbine and Corundum Substrates, Journal of Crystal Growth 9, pp. 158-164 (1971).
Sugiyama et al., Vapor Phase Epitaxial Growth and Characterization of Ga.sub.1-2y In.sub.y As.sub.1-x P.sub.x Quarterly Alloys, Japanese Journal of Applied Physics, pp. 2197-2203 (Dec., 1977).
Holmes & Kamath, Growth Characteristics of LPE InSb and InGaSb, Journal of Electronic Materials, vol. 9, pp. 95-111, (Nov. 1, 1980).
Noreika, Francombe & Wood, Growth of Sb and InSb by Molecular-Beam Epitaxy, Journal of Applied Physics 52(12), pp. 7416-7420, (Dec., 1981).
Wood, Noreika & Francombe, Thallium Incorporation in Molecular-Beam-Epitaxial InSb, J.Appl.Phys. 59(10), pp. 3610-3612 (May, 1986).
Williams et al., Molecular-Beam Epitaxy of (100) InSb for CdTe/InSb Device Applications, J.Appl.Phys. 63(5), pp. 1526-1532 (Mar. 1, 1988).
Kurtz et al., High Photoconductive Gain in Lateral InAsSb strained-Layer Superlattice Infrared Detectors, Appl. Phys. Lett. 53(20), pp. 1960-1963 (Nov. 14, 1988).
Chyi et al., Growth of InSb and InAs.sub.1-x Sb.sub.x on GaAs By Molecular Beam Epitaxy, Appl.Phys.Lett. 53(12), pp. 1092-1094 (Sep. 19, 1988).
Williams et al., Heteroepitaxial Growth of InSb on (100) GaAs Using Molecular Beam Epitaxy, Appl.Phys.Lett. 53(13), pp. 1189-1191 (Sep. 26, 1988).
Chyi et al., Growth of InSb and InAs.sub.1-x Sb.sub.x on GaAs By Molecular Beam Epitaxy, Appl.Phys.Lett. 53(12), pp. 1092-1094 (Sep. 19, 1988).
Razeghi, A Survey of GaInAsP-InP for Photonic and Electronic Applications, vol. 1, The MOCVD Challenge, Chapters 1,4 & 5 (1989).
Akasaki et al., Effects of Ain Buffer Layer on Crystallographic Structure and on Electrical and Optical Properties of GaN and Ga.sub.1-x Al.sub.x N Films Grown on Sapphire Substrate by Movpe, Journal of Crystal Growth 98, pp. 209-219 (1989).
Chyi et al., Molecular Beam Epitaxial Growth and Characterization of InSb on Si, Appl.Phys.Lett. 54(11), pp. 1016-1018 (Mar. 13, 1989).
Davis & Thompson, Molecular Beam Epitaxy Growth of InSb Films on GaAs, Appl. Phys. Lett. 54(22). pp. 2235-2237 (May 29, 1989.
Oh et al., Molecular Beam Epitaxial Growth of High-Quality InSb on InP and GaAs Substrates, J. Appl. Phys. 66(8), pp. 3618-3621 (Oct. 15, 1989).
Ma et al., Organometallic Vapor Phase Epitaxial Growth and Characterization of InAsSbBi, Appl. Phys. Lett. 55 (23), pp. 2420-2422 (Dec. 4, 1989).
Zhang et al., A Transmission Electron Microscopy and Reflection High-Energy Electron Diffraction Study of the Initial Stages of the Heteroepitaxial Growth of InSb on GaAs (001) by Molecular Beam Epitaxy, J. Appl. Phys. 67(2), pp. 800-806 (Jan. 15, 1990).
Oliveira et al., A Generalized Model for the Reconstruction of (001) Surfaces of III-V Compound Semiconductors Based on a Rheed Study of InSb(001), Surface Science 227, pp. 150-156 (1990).
Chow et al., Growth and Characterization of InAs/Ga.sub.1-x In.sup.x Sb Strained-Layer Superlattices, Appl. Phys. Lett. 56(15), pp. 1418-1420 (Apr. 9, 1990).
Razeghi et al., Ga.sup.0.51 In.sup.0.49 P/Ga.sup.x In.sup.1-x As Lattice-Matched (x=0.85) and Strained (x=0.85) Two-Dimensional Electron Gas Field-Effect Transistors, Semicond. Sci. Technol. 6, pp. 103-107 (1991).
Biefeld & Hebner, Growth of InSb on GaAs by Metalorganic Chemical Vapor Deposition, Journal of Crystal Growth 109, pp. 272-278 (1991).
Gaskill et al., High Mobility InSb Grown By Organometallic Vapor Phase Epitaxy, Appl. Phys. Lett. 58(17), pp. 1905-1907 (Apr. 29, 1991).
Thompson et al., Use of Atomic Layer Epitaxy Buffer for The Growth of InSb on GaAs by Molecular Beam Epitaxy, J. Appl. Phys. 69(10), pp. 7166-7172 (May 15, 1991).
Garbuzov et al., High-Power 0.8 m InGaAsP-GaAs SCH SQW Lasers, IEEE Journal of Quantum Electronics, vol. 27. No. 6 (Jun. 6, 1991).
Edgar, J.H., Prospects for Device Implementation of Wide Band Gap Semiconductors, J. Mater. Res., vol. 7, No. 1, pp. 235-252 (Jan. 1, 1992).
Chen et al., Accurate Determination of Misfit Strain, Layer Thickness, and Critical Layer Thickness in Ultrathin Buried Strained InGaAs/GaAs Layer by X-Ray Diffraction, J.Vac.Sci.Techno. B 10(2), pp. 769-770 (Mar./Apr. 1992).
Soderstrom et al., Molecular Beam Epitaxy Growth and Characterization of InSb Layers on GaAs Substrates, Semicond. Sci. Techno. 7, pp. 337-343 (1992).
Kuo et al., Gas Source Molecular-Beam Epitaxial Growth of Normal Incidence GaAs/AlGaAs Quantum Well Infrared Photodetectors, J. Vac. Sci. Techno. B 10(2), pp. 995-997 (Mar./Apr. 1992).
Ferguson et al., RHEED Intensity Effects During the Growth of InAs, InSb and In(As, Sb) By Molecular Beam Epitaxy, Journal of Crystal Growth 121, pp. 267-277 (1992).
Strite & Morkoc, aN, AIN, and InN: A Review, J. Vac. Sci Techno. B 10(4), pp. 1237-1248 (Jul./Aug. 1992).
Chung & Gershenzon, The Influence of Oxygen on the Electrical and Optical Properties of GaN Crystals Grown By Metalorganic Vapor Phase Epitaxy, J. Appl. Phys. 72(2), pp. 651-659 (Jul. 15, 1992).
Levine et al., Photoexcited Escape Probability, Optical Gain, and Noise in Quantum Well Infrared Photodetectors, J. Appl. Phys. 72 (9), pp. 4429-4443 (Nov. 1, 1992).
Lee et al., Characterization of Molecular Beam Epitaxially Grown InSb Layers and Diode Structures, Solid-State Electronics vol. 36, No. 3, pp. 387-389 (1993).
Li et al., Molecular-Beam Epitaxial Growth of InSb on GaAs and Si for Infrared Detector Applications, J. Vac. Sci. Techno. 11(3), pp. 872-874 (May/Jun. 1993).
Choi et al., High Quality InSb Growth on GaAs and Si By Low Pressure Metalorganic Chemical Vapor Deposition, Mat. Res. Soc. Syrup. Proc. vol. 281, pp. 375-380 (1993).
Schifgaarde et al., InTISb: An Infrared Detector Material?, Appl. Phys. Lett. 62(16), pp. 1857-1859 (Apr. 19, 1993).
Besikci et al., Anomalous Hall Effect in InSb Layers Grown By Metal Organic Chemical Vapor Deposition on GaAs Substrates, J.Appl. Phys. 73 (10), pp. 5009-5013 (May 15, 1993).
Choi et al., Growth of In.sup.1-x TI.sup.x Sb, a New Infrared Material, By Low-Pressure Metalorganic Chemical Vapor Deposition, Appl. Phys. Lett. 63 (3), pp. 361-363 (Jul. 19, 1993).
Razeghi et al., In.sup.1-x TI.sup.x Sb for Long Wavelength Infrared Photodetectors (Invited Talk), Electrochemical Society, Inc. 184 Meeting Program, 3 pages (Oct. 10-15, 1993).
Partin et al., Growth of High Mobility InSb by Metalorganic Chemical Vapor Deposition, Journal of Electronic Materials, vol. 23, No. 2 (Jun. 11, 1993).
Staveteig et al., Photoconductance Measurements on InTISb/InSb/GaAs Grown By Low-Pressure Metalorganic Chemical Vapor Deposition, pp. 460-462 (Jan. 24, 1994).
Choi et al., Charterization of InTISb/InSb Grown by Low-Pressure Metal-Organic Chemical Vapor Deposition On a GaAs Substrate, J.Appl. Phys. 75 (6), vol. 75, No. 6 (Mar. 15, 1994).
Diaz et al., Efficiency of Photoluminescence and Excess Carrier Confinement in InGaAsP/GaAs Structures Prepared By Metal-Organic Chemical-Vapor Deposition, J. Appl. Phys. 76(2), pp. 700-704 (Jul. 15, 1994).
Cengiz et al., Electron Transport Properties of Ga0.51In0.4P for Device Applications, IEEE Transaction on Electron Devices, vol. 4, No. 6, pp. 1066-1069 (Jun., 1994).
Diaz et at., High-Power InGaAsP/GaAs 0.8 Laser Diodes and Peculiarities of Operational Characteristics, Appl. Phys. Lett. 65 (8), pp.1004-1005 (Aug. 22, 1994).
Hoff et al., Intersubband Hold Absorption in GaAs-GainP Quantum Wel
Jackson Jerome
Kelley Nathan K.
Northwestern University
LandOfFree
Composition for InSB and GaAs thin film on silicon substrate for does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Composition for InSB and GaAs thin film on silicon substrate for, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition for InSB and GaAs thin film on silicon substrate for will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-220560