Composition for circuit board manufacture

Etching a substrate: processes – Forming or treating electrical conductor article

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C216S002000, C216S106000, C216S108000, C252S079200, C252S079300, C134S002000, C134S003000

Reexamination Certificate

active

06261466

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a process for the manufacture of multilayer printed circuit boards. In particular, this invention relates to a novel composition for treatment of copper and its alloys to form a surface having a uniformly etched and conversion coated surface with desirable properties for lamination of circuit layers in multilayer circuit fabrication.
2. Description of the Prior Art
Multilayer printed circuit boards are used for a variety of electrical applications and provide the advantage of conservation of weight and space. A multilayer board is comprised of two or more circuit layers, each circuit layer separated from another by one or more layers of dielectric material. Circuit layers are formed by applying a copper layer onto a polymeric substrate. Printed circuits are then formed on the copper layers by techniques well known to the art, for example print and etch to define and produce the circuit traces—i.e., discrete circuit lines in a desired circuit pattern. Once the circuit patterns are formed, a stack is formed comprising multiple circuit layers separated from each other by a dielectric layer, typically epoxy. Once the stack is formed, it is subjected to heat and pressure to form the laminated multilayer circuit board.
Following lamination, the multiple circuit layers are electrically connected to each other by drilling through holes through the board surface. Resin smear from through-hole drilling is removed under rather stringent conditions, for example, by treatment with a concentrated sulfuric acid or hot alkaline permanganate solution. Thereafter, the through-holes are further processed and plated to provide a conductive interconnecting surface.
Prior to lamination and through hole formation, the discrete copper circuit lines are typically treated with an adhesion promoter to improve bond strength between each circuit layer and adjacent interleaving dielectric resin layers. One method used by the art to improve bond strength involves oxidative treatment of the copper circuit lines to form a copper oxide surface coating on the circuit lines. The oxide coating is usually a black or brown oxide layer that adheres well to the copper. The oxide possesses significantly more texture or roughness than an untreated copper surface. Chemical treatments which produce adherent conversion coatings on metal surfaces, such as black oxide, are very commonly used as to promote adhesion of organic materials to metals. Other examples include metal phosphate coatings used as paint adhesion promoters. Such roughened and conversion coated surfaces enhance adhesion and wettability to the adjacent insulating layer by a mechanism that is believed to include mechanical interlocking between the metal surface and a dielectric resin layer. Metal surfaces that have been microetched, but not conversion coated do not generally possess as high a degree of surface roughness and texture, as can be inferred from their greater reflection of visible light.
Oxide layers are most often formed using highly alkaline solutions containing an oxidizing agent, typically sodium chlorite as disclosed in U.S. Pat. Nos. 2,932,599 and 4,844,981.
As described above, following formation of a multilayer stack, metallized through holes are formed to provide electrical connections between circuit layers. The formation of the metallized holes involves treatment with acidic materials. The acidic materials have a tendency to dissolve the copper oxide on the circuit lines where exposed in a through hole, interfering with bond between the circuit lines and the dielectric resin material and often causing a condition known in the art as pink ring. To reduce the susceptibility of the oxide to such attack, the oxide treatment described above is often followed by a step of converting the copper oxide to a form less soluble in acid while retaining enhanced surface roughness. Exemplary processes include reduction of the oxide by treatment with a reducing solution such as dimethylamine borane as shown in U.S. Pat. No. 4,462,161, an acid solution of selenium dioxide as shown in U.S. Pat. No. 4,717,439, or a sodium thiosulfate solution as shown in U.S. Pat. No. 5,492,595. An alternative approach involves partial or complete dissolution of the oxide layer to provide a copper surface having enhanced texture as shown in U.S. Pat. No. 5,106,454.
Other techniques known in the art to promote adhesion between copper surfaces and dielectric resins prior to multilayer lamination include the use of etches inclusive of cupric chloride etchants, mechanical treatments designed to produce surface texture, and metal plating, all designed to produce roughened surfaces. Historically, mechanical treatment and chemical etching procedures have not generally found wide acceptance in the industry, most likely due to deficiencies in both process consistency and in the bond strength to the dielectric material. Electrolytic metal plating processes may provide highly roughened surfaces and are commonly used to enhance adhesion of continuous sheets of copper to epoxy for formation of copper circuit board laminates. However, the innerlayers of a printed circuit board contain many electrically discrete circuit traces which prevent use of a process requiring electrical connection to all areas to be plated.
Oxidizing solutions containing peroxide are well known in the art. Such solutions have been used for a variety of purposes including removal of oxide scale, cleaning of surfaces, creation of smoother, brighter metallic surfaces and creation of microroughened metal surfaces. For example, in CA-A-1250406, metals such as iron, copper or their alloys are treated using a solution comprising hydrogen peroxide for metal pickling or polishing. The hydrogen peroxide solution contains a stabilizer, optionally a corrosion inhibitor such as benzotriazole, and an anionic or non-ionic surfactant. Because hydrogen peroxide decomposition is a problem, many hydrogen peroxide based compositions have been developed, each comprising a different type of stabilizing system.
Cleaning or polishing compositions based on hydrogen peroxide are described, for example, in U.S. Pat. No. 3,556,883 which discloses compositions comprising hydrogen peroxide, sulfuric acid and alcohol stabilizers for cleaning of, for example, metal wires. Other similar cleaning compositions are described in U.S. Pat. No. 3,756,957 where a stabilizer for hydrogen peroxide is selected from the group of aliphatic amines and their salts, alkoxy amines, aliphatic acid amines and aliphatic amines.
For use in the printed circuit industry, hydrogen peroxide etching solutions are known and have been described as etchant compositions for use in an etching step for forming a copper circuit pattern from copper laminate mounted on an insulating layer protected in a pattern corresponding to a final desired circuit pattern. The foil is then contacted with the etching solution and the unprotected copper leaving the desired circuit pattern. During the etching processes, the copper foil contacted with the hydrogen peroxide-based composition is etched away for complete removal. Peroxide etchants are described, for example, in U.S. Pat. Nos. 4,144,119; 4,437,931; 3,668,131; 4,849,124; 4,130,454; 4,859,281 and 3,773,577. In the latter two references, the etching composition also comprises a triazole to increase etch rate.
In U.K. Patent No. 2,203,387, a copper etching process is described with an etch bath regeneration step. A hydrogen peroxide etching composition comprising stabilizers including wetting agents is disclosed for cleaning copper surfaces of a printed circuit board prior to electroplating an additional copper layer onto the conducting layer which is formed from copper. After the electroplating step, a photoresist or screen resist is applied.
In U.S. Pat. No. 4,051,057, a bright dip composition for polishing/pickling metal surfaces, for instance of copper, comprises sulfuric acid, a hydroxy acid, such as citric acid, hydrogen peroxide, a triazole and/or a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composition for circuit board manufacture does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composition for circuit board manufacture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition for circuit board manufacture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2525504

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.