Composition and process for the reactive brazing of ceramic...

Brakes – Wheel – Transversely movable

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C420S463000, C420S466000, C420S508000

Reexamination Certificate

active

06247565

ABSTRACT:

The present invention relates to a composition and a process for the reactive brazing or hard soldering of ceramic materials containing alumina with themselves or with metals.
It more particularly applies to the production of parts having a complex shape from ceramic elements having a simple shape, which are assembled with other ceramic elements or with metal elements. Such parts must be able to withstand operating temperatures from 500 to 1200° C.
For the production of refractory parts having ceramic elements assembled with other ceramic elements or metal elements, the only possible assembly methods are solid phase diffusion welding and reactive brazing. Thus, assembly methods using an energy beam without brazing solder are unusable, because it is impossible to directly melt a ceramic element without destroying it. In the same way, assemblies by bonding are not suitable, because the adhesives are unable to withstand temperatures exceeding 200° C.
Compared with brazing, solid phase diffusion welding suffers from the disadvantage of being very limitative with regards to the shapes of the parts to be assembled on using uniaxial pressing, or requires numerous operations on using hot isostatic compression (production of the envelope, tight sealing in vacuo, hot isostatic compression and final machining of the envelope). Moreover, this procedure must be avoided during the assembly of a ceramic element with a metal element, because it requires long time periods of 1 to several hours, which can aid the enlargement of the grains in the metal element.
It is known that ceramics containing alumina are not very reactive.
In addition, with the exception of active chemical elements such as Ti, Zr and Hf, most transition metal elements such as Ni, Fe, Cu, Mn, Co, Cr, Pt, Au, Ag and Pd do not wet and do not adhere to an alumina surface. It is therefore necessary to use a brazing process, where the melting of an intermediate substance fulfils the essential function. Brazing solders of a glass of a mixed manganese and molybdenum oxide have already been used for this purpose, as described by K. White et al in Materials, Science and Engineering, 75, 1985, pp 207-213.
The brazing process using such brazing solders is relatively complex and onerous to perform, because it involves at least four successive stages of coating alumina with a paste based on molybdenum and manganese, annealing under hydrogen to create the glass, the deposition of a nickel or palladium layer by electrolysis and the actual brazing with a silver base. Moreover, it suffers from the disadvantage of requiring a hydrogen atmosphere during the annealing stage.
Other brazing processes use the reaction of reactive elements such as Ti, Zr and Hf with the alumina surface. This can be brought about by depositing beforehand on the alumina a titanium layer and then carrying out the brazing with a silver base, or by directly using a brazing solder containing the reactive element associated with a matrix such as an Ag—Cu matrix, as described by A. J. Moorhead in the Journal of Material Science, 26, 1991, pp 4067-4075, U.S. Pat. No. 5,152,449 and JP-A-61/169189.
JP-A-59/141395 describes another ceramic part brazing method, according to which addition takes place to a brazing solder based on silver, copper, nickel, etc., of at least one metal element able to absorb hydrogen. This metal element can be chosen from among Li, Na, K, Be, Mg, Ca, Sr, Ba, Al, Sc, Y, La, Ti, Zr, Hf, V, Nb and Ta. As a result of the presence of said metal element able to absorb hydrogen in the molten state, a porous material is obtained, because the hydrogen is released when the brazing solder solidifies and there is a reduction of the thermal stresses liable to occur at the brazed joint due to the difference between the thermal expansion coefficients of the assembled materials.
The latter process suffers from the disadvantage of requiring the presence of hydrogen during the melting of the brazing solder. It is difficult and dangerous to use hydrogen. However, it is possible to generate hydrogen from air, by the decomposition of the moisture which it contains, but in the latter case, if magnesium is used, the latter will be highly oxidized during this operation.
The present invention is directed at a brazing composition and process using a reactive metal, but not requiring the presence of hydrogen for performing the brazing operation.
According to the invention, the composition of the brazing solder for the brazing of a ceramic material containing alumina with a ceramic material or with a metal, is constituted by magnesium and at least one precious metal chosen from among palladium, platinum, gold and their alloys.
In this composition, the addition of magnesium to a precious metal such as Pd, Pt or Au, makes it possible to increase the wetting of the ceramic material compared with the use of the precious metal alone. Moreover, the magnesium reacts with the alumina of the ceramic material in order to form a layer constituted by alumina and magnesia or compounds of the spinel type, which permit a good engagement between the brazing solder and the ceramic material elements or metal elements to be assembled.
Preferably, this brazing solder composition is formed by an alloy of the precious metal chosen from among Pd, Pt and Au, and magnesium, which contains at the most 5 wt. % magnesium.
As examples of such alloys, reference can be made to alloys of palladium and magnesium containing 2 to 4.5 wt. % Mg.
In order to carry out the brazing of a first ceramic element containing alumina with a second ceramic element or a metal element, between said two elements can be placed a brazing solder composition having the characteristics given hereinbefore and the total composition can be raised to a temperature of 1300 to 1600° C. under a neutral gas atmosphere, e.g. argon.
The brazing temperature is chosen as a function of the magnesium content of the composition, temperatures of 1300 to 1540° C. being appropriate. These temperatures are lower than the melting point of palladium (1555° C.) or platinum (1773° C.), but are above the boiling point of magnesium (1107° C.).
However, despite the use of such high temperatures, there is no significant evaporation of the magnesium during brazing. In addition, although magnesium tends to easily oxidize at such temperatures, such an oxidation is avoided due to the presence of the precious metal such as palladium.
Generally, the brazing solder composition is placed between the two elements in the form of a tinsel foil or sheet of limited thickness, e.g. 20 to 200 &mgr;m thick. This tinsel foil or sheet can be produced by melting the precious metal and the magnesium at a temperature of approximately 1540° C., under hydrogen, from the precious metal and magnesium of commercial purity. It is then possible to cold roll the brazing solder in order to obtain a sheet having an appropriate thickness. Thus, with magnesium concentrations below 5 wt. %, the magnesium is in solid solution in the precious metal and the alloy is ductile. In order to prepare a tinsel foil, it is possible to use other methods such as melt-spinning.
It is also possible to use other methods for interposing the brazing solder composition between the elements to be assembled. Thus, said composition can be deposited on the element or elements by methods such as physical vapour deposition (PVD), cathodic sputtering or evaporation.
In order to then melt the brazing solder by raising it to a temperature of 1300 to 1600° C., use can be made of different heating methods, e.g. a laser, an electron beam, induction heating or heating by means of a resistor. The atmosphere used during heating is an inert gas atmosphere, e.g. argon.
Brazing solders based on magnesium and Pd, Pt and/or Au according to the invention are advantageous, because they make it possible to assemble in one operation ceramic elements containing alumina and other ceramic elements containing alumina or metal elements. The ceramic elements containing alumina can e.g. be alumina, pure sapphire, mullite and cordierite. The

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composition and process for the reactive brazing of ceramic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composition and process for the reactive brazing of ceramic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition and process for the reactive brazing of ceramic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2516160

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.