Composition and methods using myelin-associated glycoprotein...

Drug – bio-affecting and body treating compositions – Immunoglobulin – antiserum – antibody – or antibody fragment,... – Structurally-modified antibody – immunoglobulin – or fragment...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S008100, C514S002600, C435S244000, C435S007200

Reexamination Certificate

active

06203792

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
This invention relates to the novel identification of myelin-associated glycoprotein (“MAG”) as a potent inhibitor of neural regeneration. More particularly, this invention relates to compositions and methods useful for reversing inhibition of neural regeneration in the central and peripheral nervous system. Assays to monitor the effects of MAG on neural regeneration and to identify agents which will block or promote the inhibitory effects of MAG on neural outgrowth are provided. Screening methods for identifying such agents are also provided. This invention also relates to compositions and methods using agents that can reverse the inhibitory effects of MAG on neural regeneration. Methods for regulating and for promoting neural growth or regeneration in the nervous system, methods for treating injuries or damage to nervous tissue or neurons, and methods for treating neural degeneration associated with disorders or diseases, comprising the step of administering at least one of the compositions according to this invention are provided.
BACKGROUND OF THE INVENTION
The mammalian nervous system does not regenerate after injury despite the fact that there are many molecules present which encourage/promote axonal (nerve) growth. It is believed that the lack of regeneration caused by the presence of molecules in the central nervous system (CNS) and the peripheral nervous system (PNS) which actively prevent/inhibit regeneration. Hence, the well documented inability of the adult mammalian CNS to regenerate after injury is believed to result from a predominance of inhibitory molecules.
It has been demonstrated that when neurons are grown on tissue sections of the CNS they fail to extend processes onto areas of white matter, myelin. It is believed that myelin-specific inhibitory molecules can largely account for the lack of CNS regeneration and their identification will help in the design of therapies to encourage regrowth after injury. The precise molecules responsible for this inhibition have, so far, remained elusive. If these inhibitory molecules can be identified and blocked, then neural regeneration can be encouraged.
Schwab and co-workers have identified two components in CNS myelin, in the molecular weight ranges of approximately 35 kD and 250 kD, which arrest axonal growth. The most compelling observation in support of the inhibitory action of these two protein fractions is that antibodies raised to proteins eluted from these regions of polyacrylamide gels after separation of CNS myelin proteins, specifically reverses the inhibitory effect of myelin in vitro and allows limited spinal cord regeneration when applied in vivo to transected nerves (Caroni, P. and Schwab, M. E.,
Neuron,
1, pp. 85-96 (1988a);
J. Cell Biol.,
106, pp. 1281-88 (1988b); Schnell, L. and Schwab, M. E.,
Nature,
343, pp. 269-72 (1990)). The nature of these two proteins and how they act have not yet been described, but, it is generally accepted that they are significant contributors to the inhibitory effect of this tissue. However, as acknowledged by the authors, other factors are likely to contribute to the inhibition by CNS myelin as even in the presence of antibodies directed against these two proteins, the majority of axons in vivo fail to regenerate (Schnell, L. and Schwab, M. E.,
Nature,
343, pp. 269-72 (1990); Schnell et al.,
Nature,
367, pp. 170-73 (1993)).
In addition to inhibitory molecules in myelin, another family of proteins has recently been identified whose members inhibit axonal regeneration. These molecules are called collapsins (Luo et al.,
Cell,
75, pp. 217-27 (1993)). However, collapsins are found ubiquitously throughout the nervous system and as they are found in regions of the nervous system in which axons will grow, i.e. gray matter, they are unlikely to contribute significantly to the lack of neural regeneration after injury. Instead, the collapsins most likely play a role in guiding growing axons during development.
Previously it was shown that MAG, like many members of the Ig-superfamily of molecules, could promote neurite outgrowth, in this case, from dorsal root ganglion (DRG) neurons from 2 day old rats (Johnson et al.,
Neuron,
3, pp. 377-85 (1989)). We observed a similar effect on DRG neurons from rats up to postnatal day 3, but after this age MAG had the opposite effect, i.e., it inhibited neurite outgrowth (Mukhopadhyay et al.,
Neuron,
13, pp. 757-67 (1994)). Furthermore, we also found that MAG dramatically inhibited neurite outgrowth from cerebellar neurons from rats of all ages up to adult. Polyclonal antibodies directed against MAG could specifically block both stimulatory and inhibitory effects of MAG on neurite outgrowth. MAG, therefore, depending on the age and the type of neuron, can either promote or inhibit neurite outgrowth. Subsequent to our report on the inhibitory effects of MAG, another group demonstrated, using a different complementary approach, that MAG is an inhibitor of axonal growth (McKerracher et al.,
Neuron,
13 pp. 805-811 (1994); WO 95/22344 (Aug, 24, 1995); incorporated herein by reference).
It would be useful to block the inhibitors of axonal regeneration for treating patients with nervous system injuries where neural regeneration is a problem. No molecule had been identified in myelin which is a potent inhibitor of axonal regeneration. Although Schwab and co-workers identified components in myelin that are inhibitory, the precise nature of these components has not been identified, i.e., they have not been cloned nor have the proteins been purified. In addition, there was no information available on the component on the neuron that the putative inhibitory molecules interact with to prevent regrowth. As no inhibitory nor interacting molecules had been precisely identified, it was difficult, if not impossible, to logically design strategies whereby these molecules can been blocked and prevented from inhibiting neural regeneration.
SUMMARY OF THE INVENTION
The present invention solves the problems referred to above by identifying MAG as a potent inhibitor of axonal regeneration in the central nervous system (CNS) and the peripheral nervous system (PNS). The present invention provides compositions and methods for blocking or manipulating the levels of MAG activity in the nervous system.
In one embodiment, the compositions comprise a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one inhibitor of MAG. Inhibitors of MAG include but are not limited to anti-MAG antibodies, altered and/or mutated forms of MAG characterized by an altered biological activity, free sialic acid-bearing sugars, modified derivatives of sialic acid attached to a sugar, a sialic acid-bearing sugar attached to a protein or lipid carrier molecule, a modified sialic acid-bearing sugar attached to a protein or lipid carrier molecule and a sialic acid glycopeptide.
In one preferred embodiment, the MAG inhibitor comprises a small sialic acid-bearing oligosaccharide (sugar), which is optionally a competitive inhibitor of sialidase. More preferably, the sialic acid analog is sialo 2,3-&agr; lactose (2,3-SL) or 2,3-dideoxy sialic acid (DD-NANA).
In another preferred embodiment, the MAG inhibitor comprises an altered and/or mutant form of MAG which can inhibit the binding of endogenous MAG to neurons in the CNS or PNS. Altered forms of MAG preferably comprise all or a portion of the extracellular domain of MAG fused to another molecule which renders the chimeric protein soluble. One such preferred soluble MAG chimeric protein comprises the five Ig-like domains of MAG fused to the Fc domain of a human immunoglobulin molecule, such as IgG (“MAG-Fc”).
Preferred altered/mutated forms of MAG are soluble molecules which harbor one or more mutations in the MAG molecule that reduce or eliminate its ability to inhibit or promote neurite outgrowth compared to endogenous MAG or MAG-Fc, but do not significantly diminish the binding of the altered or mutant form of MAG to neuronal surfaces. Most preferred altered/mutant

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composition and methods using myelin-associated glycoprotein... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composition and methods using myelin-associated glycoprotein..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition and methods using myelin-associated glycoprotein... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2488298

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.