Composition and method of treating hearing loss

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Ortho-hydroxybenzoic acid or derivative doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S159000, C514S458000

Reexamination Certificate

active

08053424

ABSTRACT:
A composition for treating hearing loss includes components that function through different biological mechanisms to provide an additive effect that is greater than the effect of the individual components alone. The composition includes a biologically effective amount of vitamin E for inhibiting propagation of lipid peroxidation that contributes to hearing loss. The composition also includes a biologically effective amount of a salicylate for reducing hydroxyl radicals that contribute to hearing loss. A method of treating hearing loss includes the step of internally administering the composition, as described above, to a mammal within three days of trauma to a middle or inner ear of the mammal. In other words, the composition is effective even when administered as late as three days after trauma to a middle or inner ear of a mammal.

REFERENCES:
patent: 6093417 (2000-07-01), Petrus
patent: 6423321 (2002-07-01), Tobinick
patent: 6524619 (2003-02-01), Pearson et al.
patent: 6660297 (2003-12-01), Bartels et al.
patent: 2003/0191064 (2003-10-01), Kopke
patent: 2004/0033273 (2004-02-01), Patwardhan et al.
patent: 2004/0101560 (2004-05-01), Sawchuk et al.
patent: 2004/0247570 (2004-12-01), Miller et al.
patent: 2005/0013854 (2005-01-01), Mannino et al.
patent: 2005/0070607 (2005-03-01), Andrus et al.
patent: 2005/0107338 (2005-05-01), Seidman
Ahn et al., Anti-Apoptotic Role of Retinoic Acid in the Inner Ear of Noise-Exposed Mice, Biochemical and Biophysical Research Commmunications 335 (2005) 485-490.
Abaamrane et al., “Long-term Administration of Magnesium After Acoustic Trauma Caused by Gunshot Noise in Guinea Pigs”, Hearing Research 247, 2009, pp. 137-145.
Attias, J., Bresloff, I., Haupt, H., Scheibe, F., Ising, H. (2003). “Preventing noise induced otoacoustic emission loss by increasing magnesium (Mg2+) intake in guinea-pigs.” J. Basic Clin. Physiol. Pharmacol. 14, 119-136.
Attias, J., Weisz, G., Almog, S., Shahar, A., Wiener, M., Joachims, Z., Netzer, A., Ising, H., Rebentisch, E., Guenther, T. (1994). Oral magnesium intake reduces permanent hearing loss induced by noise exposure. Am. J. Otolaryngol. 15, 26-32.
Attias et al., “Reduction in Noise-Induced Temporary Threshold Shift in Humans Following Oral Magnesium Intake”, Clinical Otolaryngology 29, Blackwell Publishing Ltd, 2004, pp. 635-641.
Balavoine GG, Geletii YV (1999) Peroxynitrite scavenging by different antioxidants. Part I: Convenient Assay. Nitric Oxide 3:40-54.
Bertolaso, L, Martini, A., Bindini, D., Lanzoni, I., Parmeggiani, A., Vitali, C., Kalinec, G., Kalinec, E, Capitani, S., Previati, M. (2001). Apoptosis in the OC-k3 immortalized cell line treated with different agents. Audiology 40, 327-35.
Biesalski, H. K., Wellner, U., Weiser, H. (1990). Vitamin A deficiency increases noise susceptibility in guinea pigs. J. Nutr. 120, 726-37.
Boland A, Gerardy J, Mossay D, Seutin V (2003) Pre- and post-treatment with pirlindole and dehydropirlindole protects cultured brain cells against nitric oxide-induced death. Eur J Pharmacol 466:21-30.
Branis et al., “Effect of Ascorbic Acid on the Numerical Hair Cell Loss in Noise Exposed Guinea Pigs”, Hearing Research 33, Elsevier Science Publishers B.V., 1988, pp. 137-140.
Cevette, M. J., Vormann, J., Franz, K. (2003). Magnesium and hearing. J. Am. Acad. Audiol. 14, 202-12.
Chae HJ, Chae SW, Reed JC, Kim HR (2004) Salicylate regulates COX-2 expression through ERK and subsequent NF-kappaB activation in osteoblasts. Immunopharmacol Immunotoxicol 26:75-91.
Diamond, B. J., Shiflett, S. C., Feiwel, N., Matheis, R. J., Noskin, O., Richards, J. A., Schoenberger, N. E. (2000). Ginkgo biloba extract: mechanisms and clinical indications. Arch. Phys. Med. Rehabil. 81, 668-78.
Didier, A., Droy-Lefaix, M. T., Aurousseau, C., Cazals, Y. (1996). Effects of Ginkgo biloba extract (EGb 761) on cochlear vasculature in the guinea pig: morphometric measurements and laser Doppler flowmetry. Eur. Arch. Otorhinolaryngol. 253, 25-30.
Duan, M., Qiu, J., Laurell, G., Olofsson, A., Counter, S. A., Borg, E. (2004). Dose and time-dependent protection of the antioxidant N-L-acetylcysteine against impulse noise trauma. Hear. Res. 192, 1-9.
Evans, P., Halliwell, B. (1999). Free radicals and hearing. Cause, consequence, and criteria. Ann. N. Y. Acad. Sci. 884, 19-40.
Fetoni AR, Sergi B, Ferraresi A, Paludetti G, Troiani D (2004) alpha-Tocopherol protective effects on gentamicin ototoxicity: an experimental study. Int J Audiol 43:166-171.
Fischer et al., “Protection Of the Cochlea by Ascorbic Acid in Noise Trauma”, HNO 57(4) , Apr. 2009, pp. 339-344.
English language abstract for Fischer et al., “Protection Of the Cochlea by Ascorbic Acid in Noise Trauma”, HNO 57 (4) , Apr. 2009, pp. 339-344.
Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236-245.
Gordin, A., Goldenberg, D., Golz, A., Netzer, A., Joachims, H. Z. (2002). Magnesium: a new therapy for idiopathic sudden sensorineural hearing loss. Otol. Neurotol. 23, 447-51.
Gunther, T., Ising, H., Joachims, Z. (1989). Biochemical mechanisms affecting susceptibility to noise-induced hearing loss. Am. J. Otol. 10, 36-41.
Gutteridge, J. M. C., Halliwell, B. 1999. Antioxidant protection and oxygen radical signaling. In: Gilbert, D.L, Colton, C. A., (Eds.), Reactive oxygen species in biological systems: An interdisciplinary approach. Kluwer Academic/Plenum Publishers, New York. pp. 189-218.
Halliwell, B, Gutteridge, J.M.C., Free Radicals in Biology and Medicine, 3rd Ed., Oxford Univ. Press (1999), Chapter 3—Antioxidant defences, pp. 105-245.
Haupt, H. Scheibe, F. (2002). Preventive magnesium supplement protects the inner ear against noise-induced impairment of blood flow and oxygenation in the guinea pig. Magnes. Res. 15, 17-25.
Haupt, H., Scheibe, F., Mazurek, B. (2003). Therapeutic efficacy of magnesium in acoustic trauma in the guinea pig. ORL. J. Otorhinolaryngol. Relat. Spec. 65, 134-9.
Heinrich et al, “Ascorbic Acid Reduces Noise-Induced Nitric Oxide Production in the Guinea Pig Ear”, Laryngoscope 118, The American Laryngological, Rhinological and Otological Society, Inc., May 2008, pp. 837-842.
Henderson, D., McFadden, S. L., Liu, C. C., Hight, N., Zheng, X. Y. (1999). The role of antioxidants in protection from impulse noise. Ann. N. Y. Acad. Sci. 884, 368-80.
Hight, N. G., McFadden, S. L., Henderson, D., Burkard, R. F., Nicotera, T. (2003). Noise-induced hearing loss in chinchillas pre-treated with glutathione monoethylester and R-PIA. Hear. Res. 179, 21-32.
Hou, F., Wang, S., Zhai, S., Hu, Y., Yang, W., He, L. (2003). Effects of alpha-tocopherol on noise-induced hearing loss in guinea pigs. Hear. Res. 179, 1-8.
Hu, B. H., Zheng, X. Y., McFadden, S. L., Kopke, R. D., Henderson, D. (1997). R-phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla. Hear. Res. 113, 198-206.
Ising, H., Handrock, M., Gunther, T., Fischer, R., Dombrowski, M. (1982). Increased noise trauma in guinea pigs through magnesium deficiency. Arch. Otorhinolaryngol. 236, 139-46.
Jackson, R. L., Coleman, J. K, Ge, X., Liu, J., Hoffer, M. E., Balough, B. (2005). Antioxidant strategies for post-noise hearing loss recovery, International Symposium—Pharmacologic Strategies for Prevention and Treatment of Hearing Loss and Tinnitus, Niagra Falls, Ottawa, Canada, one page.
Jacono A.A., Hu B, Kopke RD, Henderson D, Van De Water TR, Steinman HM (1998) Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear Res 117:31-38.
Joachims, H. Z., Segal, J., Golz, A., Netzer, A., Goldenberg, D. (2003). Antioxidants in treatment of idiopathic sudden hearing loss. Otol. Neurotol. 24, 572-5.
Joachims, Z., Babisch, W., Ising, H., Gunther, T., Handrock, M. (1983). Dependence of noise-induced hearing loss upon perilymph magnesium concentration. J. Acoust. Soc. Am. 74, 104-8.
Joachims, Z., Netzer, A., Ising, H., Rebentisch, E., Attias, J., Weisz, G., Gunther, T. (

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composition and method of treating hearing loss does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composition and method of treating hearing loss, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition and method of treating hearing loss will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4306729

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.