Composition and method for treatment of otitis media

Drug – bio-affecting and body treating compositions – Effervescent or pressurized fluid containing – Organic pressurized fluid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S200230

Reexamination Certificate

active

06676930

ABSTRACT:

FIELD OF INVENTION
The present invention relates to the field of pharmacological compositions and methods of utilizing such compositions in order to improve the flow of both naturally occurring fluids and pharmacologic agents through the mammalian eustachian tube.
BACKGROUND OF THE INVENTION
Otitis media is a pathological condition common to mammalian species and most common to children. During episodes of otitis media, fluid accumulates in the middle ear or, as it is also known, the tympanic cavity.
Acute otitis media is a condition in which fluid accumulation in the middle ear is accompanied by signs or symptoms of ear infection (including both viral and bacterial etiologies). Such pathology may exhibit a bulging eardrum accompanied by pain or, in some instances, perforation of the tympanic membrane. Such perforations may also be accompanied by drainage of purulent material. In contrast, otitis media with effusion is typified by fluid accumulation within the tympanic cavity without signs of infection.
Both acute otitis media and otitis media with effusion may cause substantial pain as pressure increases, positively or negatively, within the confines of the tympanic chamber. Antibiotics, steroids, and antibiotics in combination with steroids have been utilized to treat otitis media. Antihistamine/decongestants have also been utilized in the treatment of otitis media with effusion.
The anatomical features of the middle ear define what can be described as a sealed chamber. On its lateral border, the middle ear is effectively isolated from the external auditory meatus (in the absence of a punctured ear drum), by the tympanic membrane. Medially, the middle ear is effectively sealed from the inner ear by a bony wall. The posterior wall of the tympanic cavity communicates with a large, but effectively sealed mastoid antrum. Only the anterior wall of the middle ear contains a passageway for effective communication outside of the tympanic cavity. There, a natural pathway provided by the auditory or, as it is also known, the eustachian tube, provides communication with the nasopharynx.
As stated above, during episodes of acute otitis media, the painful increased middle ear pressure may naturally resolve through a resultant perforation of, and drainage through, the tympanic membrane. However, the increased fluid pressure associated with otitis media with effusion does not resolve via this mechanism. In fact, for those patients suffering otitis media for prolonged periods of time, and especially for those evidencing significant associated hearing loss, myringotomy with the placement of a tympanostomy tube may be indicated as a means of equalizing middle ear pressure and in order to restore normal hearing. Recently, laser surgery has also been utilized to provide an aperture through the tympanic membrane through which the fluid trapped within the middle ear may drain. Besides the perforations of the eardrum provided by infection (acute otitis media), myringotomy and laser surgery, the eustachian tube, a natural middle ear drainage path described above, is provided by mammalian anatomy. Unfortunately, during episodes of otitis media with effusion (OME), a time when the natural pathway and pressure relief functions of the eustachian tube would be most useful, the increase pressure required to open the lumen (as described in more detail above and below), effectively eliminates this means of relieving middle ear pressurization. Reduced patency of the eustachian tube is believed to be one of the primary causes of OME in pediatric patients. In fact, it is known that OME elevates eustachian tube opening pressure independent of other pathological conditions effecting this conduit. The term “opening pressure” as it is utilized throughout this disclosure and within the claims, refers to the pressure, typically measured in millimeters of mercury, necessary to cause the lumen of the auditory tube to open and provide a patent pathway between the nasopharynx and tympanic cavity.
Treatment of otitis media by means of administration of anti-inflammatory agents, antibiotics, decongestants and/or anti-histamines, or combinations thereof, is limited in effectiveness as, in the absence of perforation, there is presently no method for direct application of such drugs directly to target tissues of the eustachian tube and/or middle ear. Systemic applications of drugs via parenteral or oral routes, while eventually reaching the eustachian tube and middle ear, may have adverse systemic effects and, more importantly, are not especially effective at delivering a concentrated dose of the applicable drugs where they are truly needed, directly to the target tissues. Simply put, the sealed chamber anatomy of the middle ear has, up until the present time, constituted a barrier to direct drug application.
Although the central lumen of the eustachian tube does provide a pathway to the tympanic cavity, it is, as described below, ordinarily closed and resistant to fluid passage due to its inherent anatomical configuration. During episodes of otitis media, the relatively high surface tensions present at the air/liquid interface located upon the epithelial lining of the tube lumen further increase the opening pressure required to open this channel. Although direct application of therapeutically active agents, effective in the treatment of otitis media, to the lumen of the eustachian tube, and via the lumen to the middle ear, would be highly advantageous in treating otitis media, no method or composition has yet been disclosed capable of overcoming the surface tension within the tube lumen so as to facilitate opening of the tube and transport of such drugs throughout the lumen and on to the tissues of the middle ear. What is needed is a composition and method of applying same, especially formulated and adapted to decrease the surface tension of the auditory tube so as to decrease the opening pressure thereof, thereby providing a patent conduit for therapeutic agents, effective in the treatment of otitis media, to travel through said tube to effectively treat said condition.
Pathological conditions can arise from, and can cause changes in surface tension values of air/liquid interfaces in other organs of mammalian anatomy. The naturally occurring “surfactant system” secreted upon the epithelial lining of the lung which is deficient in cases of R.D.S. is known to be comprised of a complex mixture of lipids, proteins and carbohydrates (as described in a recent review: Surfactants and the Lining of the Lung, The John Hopkinds University Press, Baltimore, 1988). The prime function of the surfactant system is to stabilize the alveoli and associated small airways against collapse by decreasing the surface tension at the air/liquid interface. It is now believed that the action of the phospholipid component of the surfactant system is the principal source of the powerful surface tension reduction effect of the naturally occurring surfactant system of the lung. More specifically, it is known that the fully saturated diacylphospholipids, principally, dipalmitoyl phosphatidylcholine (DPPC) provide liquid balance and anti-collapse properties to the lung's epithelial lining. In addition to DPPC, spreading agents, also found within the naturally occurring surfactant system, assist DPPC in rapidly forming a uniform spread film on the air/liquid surfaces of the lung. Such spreading agents include cholesteryl esters such as, for example, cholesteryl palmitate (CP); phospholipids such as, for example, diacylophosphatidylglycerols (PG), diacylphosphatidylethanolamines (PE), diacylphosphatidylserines (PS), diacylphosphatidylinositols (PI), sphingomelin (Sph) and Cardiolipin (Card); and virtually and other phospholipid, and of the lysophospholipids; or any of the plasmalogens, dialklylphospholipids, phosphonolipids, carbohydrates and proteins, such as, for example, albumin, pulmonary surfactant proteins A, B, C and D. The naturally occurring surfactant system is further described in U.S. Pat. No. 5,306,483.
DPPC has been administered to infa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composition and method for treatment of otitis media does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composition and method for treatment of otitis media, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition and method for treatment of otitis media will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3251407

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.