Composition and method for treatment of conditions having an...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S461000, C536S055200

Reexamination Certificate

active

06767899

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to therapeutic compositions and methods of treatment for conditions having an inflammatory component, and more specifically bone, joint or connective tissue inflammation. Examples of such conditions include arthritis, including osteoarthritis and rheumatoid arthritis, rheumatism, tendonitis, bursitis, degenerative spinal disc disease, and trauma to joints, tendons, and ligaments, including sports trauma.
Inflammation, as defined in Dorland's Medical Dictionary, is “a localized protective response elicited by injury or destruction of tissues which serves to destroy, dilute or wall off both the injurious agent and the injured tissue.” It is characterized by dilation of the microvasculature, leakages of the elements of blood into the interstitial spaces, and migration of leukocytes into the inflamed tissue. On a macroscopic level, this is usually accompanied by the familiar clinical signs of erythema (redness), edema (fluid buildup), hyperalgesia (tenderness), heat, and pain. During this complex response, chemical mediators such as histamine, 5-hydroxytryptamine, various chemotactic factors, bradykinin, leukotrienes, and prostaglandins are liberated locally. Phagocytic cells migrate into the area, and cellular lysosomal membranes may be ruptured, releasing lytic enzymes. All of these events may contribute to the inflammatory response.
Inflammation in patients with rheumatoid arthritis probably involves the combination of an antigen (gamma globulin) with an antibody (rheumatoid factor) and complement causing the local release of chemotactic factors that attract leukocytes. The leukocytes phagocytose the complexes of antigen-antibody and complement and also release the many enzymes contained in their lysosomes. These lysosomal enzymes then cause injury to cartilage and other tissues, and this furthers the degree of inflammation. Cell mediated immune reactions may also be involved. Prostaglandins are also released during this process.
Prostaglandins, which are likely to be generated in inflammation, cause erythema and increase local blood flow. Two important vascular effects of prostaglandins that are not generally shared by other mediators of inflammation are a long-lasting vasodilator action and a capacity to counteract the vasoconstrictor effects of substances such as norepinephrine and angiotensin.
A number of mediators of inflammation increase vascular permeability (leakage) in the post-capillary and collecting venules. In addition, migration of leukocytes into an inflamed area is an important aspect of the inflammatory process.
Although osteoarthritis does not always include the same intense inflammatory component as rheumatoid arthritis, it does involve damage to cartilage and other tissues, resulting in pain, deformity, and limitation of motion of joints, in a similar fashion to rheumatoid arthritis.
Osteoarthritis is divided into two categories, primary and secondary osteoarthritis. In primary osteoarthritis, the degenerative wear-and-tear process generally occurs after the fifth and sixth decades, with no predisposing abnormality apparent. The cumulative effects of decades of use leads to the degenerative changes by stressing the integrity of the collagen matrix of the cartilage. Damage to the cartilage results in the release of enzymes that destroy collagen components. With aging, there is a decreased ability to restore and synthesize normal collagen structures.
Secondary osteoarthritis is associated with some predisposing factor responsible for the degenerative changes. Various predisposing factors in secondary osteoarthritis include congenital abnormalities in joint structure or function (e.g. excessive joint mobility and abnormally shaped joint surfaces), trauma (obesity, fractures along joint surfaces, surgery, etc.), crystal deposition, presence of abnormal cartilage, and previous inflammatory disease ofjoint (rheumatoid arthritis, gout, septic arthritis, etc.)
The causes of osteoarthritis are, thus, believed to include one or more of the following conditions or imbalances in the body's chemistry: excessive mobility/joint instability, age-related changes in collagen matrix repair mechanisms, hormonal and sex factors, altered biochemistry, genetic predisposition, inflammation, fractures and mechanical damage, inflammatory joint disease, joint immobilization, poor nutritional history, and others.
As anyone who has been afflicted by this disease can attest, the onset of osteoarthritis can be very subtle, morning joint stiffness often being the first symptom. As the disease progresses, there is pain on motion of the involved joint, that is made worse by prolonged activity and relieved by rest. There is usually only minor inflammation.
The specific clinical picture varies with the joint involved. Disease of the hands leads to pain and limitation of use. Knee involvement produces pain, swelling, and instability. Osteoarthritis of the hip causes local pain and a limp. Spinal osteoarthritis is very common and may result in compression of nerves and blood vessels, causing pain and vascular insufficiency.
The inflammatory response is any response characterized by inflammation as defined above. It is well known to those skilled in the medical arts that the inflammatory response causes much of the physical discomfort, i.e., pain and loss of function, that has come to be associated with different diseases and injuries. Accordingly, it is a common medical practice to administer pharmacological agents which have the effect of neutralizing the inflammatory response. Agents having these properties are classified as anti-inflammatory drugs. Anti-inflammatory drugs are used for the treatment of a wide spectrum of disorders, and the same drugs are often used to treat different diseases. Treatment with anti-inflammatory drugs is not for the disease, but most often for the symptom, i.e., inflammation.
The anti-inflammatory, analgesic, and anti-pyretic drugs are a heterogeneous group of compounds, often chemically unrelated, which nevertheless share certain therapeutic actions and side-effects. Corticosteroids represent the most widely used class of compounds for the treatment of the inflammatory response. Proteolytic enzymes represent another class of compounds which are thought to have anti-inflammatory effects. Hormones which directly or indirectly cause the adrenal cortex to produce and secrete steroids represent another class of anti-inflammatory compounds. A number of nonhormonal anti-inflammatory agents have been described. These agents are generally referred to as non-steroidal anti-inflammatory drugs (NSAIDS). Among these, the most widely used are the salicylates. Acetylsalicylic acid, or aspirin, is the most widely prescribed analgesic-antipyretic and anti-inflammatory agent. Examples of steroidal and non-steroidal anti-inflammatory agents are listed in the
Physicians Desk Reference
, 54Edition, 2000 (see pp. 202 and 217 for an index of such preparations).
The natural and synthetic corticosteroid preparations cause a nunber of severe side effects, including elevation of blood pressure, salt and water retention, and increased potassium and calcium excretion. Moreover, corticosteroids may mask the signs of infection and enhance dissemination of infectious microorganisms. These hormones are not considered safe for use in pregnant females, and long-term corticosteroid treatment has been associated with gastric hyperactivity and/or peptic ulcers. Treatment with these compounds may also aggravate diabetes mellitus, requiring higher doses of insulin, and may produce psychotic disorders. Hormonal anti-inflammatory agents which indirectly increase the production of endogenous corticosteroids have the same potential for adverse side-effects.
NSAIDS are synthetic biochemical compounds which can be toxic at high doses with a wide spectrum of undesirable side-effects. For example, salicylates contribute to the serious acid-base balance disturbances that characterize poisoning by this class of compounds. Salicylates stimulat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composition and method for treatment of conditions having an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composition and method for treatment of conditions having an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition and method for treatment of conditions having an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3197077

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.