Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...
Reexamination Certificate
2000-12-15
2002-05-14
Delcotto, Gregory (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
For cleaning a specific substrate or removing a specific...
C510S337000, C510S339000, C510S340000, C510S356000, C510S361000, C510S499000, C510S506000
Reexamination Certificate
active
06387864
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a detergent composition having improved oxidative and color stability, and to a method of making and using the same. The detergent composition comprises at least one nonionic surfactant in combination with an alkaline compound, and at least one primary amine compound.
BACKGROUND OF THE INVENTION
Alkaline sources, also referred to as caustic compounds, are used in detergent compositions for a variety of reasons, one of which is to provide detersive action and improved soil removal performance. Typical sources of alkalinity include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, alkaline earth metal silicates including potassium silicate and sodium silicate, and so forth.
One problem that occurs with the use of high amounts of an alkaline source in combination with a nonionic surfactant is oxidative deterioration and subsequent discoloration of the detergent, particularly in the presence of high temperatures, oxygen and/or water.
The present invention provides a detergent composition having excellent color stability over extended periods of time which involves adding a primary amine compound to the detergent compositions.
SUMMARY OF THE INVENTION
The present invention relates to a laundry detergent composition comprising about 1 to about 75 parts by weight of at least one caustic compound, about 0.5 to about 50 parts by weight of at least one surfactant, about 1 to about 35 parts by weight of at least one primary amine compound, and about 1 to about 60 parts by weight of at least one builder, filler, or mixture thereof. The primary amine compound is represented by the following general formula:
NH
2
—CH
2
—(CHR)
n
—OH
where each R is independently hydrogen, C
1
to C
30
alkyl, aryl, etheral, amino, hydroxy, alkoxy, or ester, and n is 0 to 12.
The present invention further relates to a method of preparing the detergent composition of the present invention by mixing the in ingredients at an elevated temperature. The detergent composition comprises about 1 to about 75 parts by weight of at least one caustic compound, about 0.5 to about 50 parts by weight of at least one surfactant, about 1 to about 60 parts by weight of at least one builder, filler, or mixture thereof, about 10 to about 20 parts by weight water, and about 0.01 to about 35 parts by weight of at least one primary compound having the following general formula:
NH
2
—CH
2
—(CHR)
n
—OH
where each R is independently hydrogen, C
1
to C
30
alkyl, aryl, etheral, amino, hydroxyl, alkoxy, or ester, and n is 0 to 12. The composition may be optionally dried.
The present invention further relates to a method of improving the stability of a laundry detergent comprising a detersive caustic compound and a nonionic surfactant, the method comprising adding about 0.05% to about 2% by weight of the detergent of a primary amine compound represented by the following general formula:
NH
2
—CH
2
—(CHR)
n
—OH
where each R is independently hydrogen, C
1
to C
30
alkyl, aryl, etheral, amino, hydroxyl, alkoxy, or ester, and n is 0 to 12.
All US patents and applications and all other documents mentioned anywhere in this application are incorporated herein by reference in their entirety.
DETAILED DESCRIPTIONS OF THE PREFERRED EMBODIMENTS
The present invention provides a detergent formulation having improved oxidative stability and color retention. The formulation has at least one nonionic surfactant, at least one caustic compound or source of alkalinity, and at least one primary amine compound.
Surprisingly, the incorporation of the primary amine compound reduces the color degradation of the detergent compositions.
Surfactant
The detergent formulations of the present invention comprise at least one nonionic surfactant. Nonionic surfactants useful herein include, but are not limited to, alkoxylated, e.g. ethoxylated, alcohols and alkyl phenols; alkoxylated fatty alcohols of C
6
to C
22
including ethoxylated and mixed ethoxylated-propyloxylated fatty alcohols; polyoxyalkylene and alkyl polyoxyalkylene surfactants; alkylene oxide block copolymers such as ethylene oxide/propylene oxide block copolymers; polyhydroxy fatty acid amides; alkyl polyglycosides; alkylpolysaccharides; glycerol ethers; long chain amine oxides including dimethyldodecylamine oxide, dimethyltetradecylamine oxide, ethylmethyltetradecylamine oxide, cetyldimethylamine oxide, dimethylstearylamine oxide, cetylethylpropylamine oxide, diethyldodecylamine oxide, diethyltetradecylamine oxide, dipropyldodecylamine oxide, bis-(2-hydroxyethyl)dodecylamine oxide, bis(2-hydroxyethyl)-3-dodecoxy-2-hydroxypropylamine oxide, (2-hydroxypropyl)methyltetradecylamine oxide, dimethyloleylamine oxide, dimethyl-(2-hydroxydodecyl)amine oxide, and the corresponding decyl, hexadecyl and octadecyl homologs; long chain phosphine oxides; dialkyl sulfoxides; fatty esters of glycerol; alkoxylated, e.g. ethoxylated, glyceryl esters; condensation products of ethylene oxide with the reaction products of propylene oxide and ethylenediamine; sorbitans and alkoxylated, e.g. ethoxylated, sorbitans; alkoxylated, e.g. ethoxylated phosphate esters; and so forth.
Particularly useful nonionic surfactants include the condensation products of primary and secondary aliphatic alcohols having about 1 to about 25 moles of ethylene oxide. The alkyl chain of the aliphatic alcohol can be either straight or branched, primary or secondary, and generally contains from about 8 to about 22 carbon atoms. The surfactants typically have about 1 to about 20 moles of ethylene oxide (EO), and preferably 3 to 15 moles of EO, and even more preferably about 5 to about 12 moles of EO per mole of alcohol. Condensates with propylene oxides (PO) and butylene oxides (BO) may also be used.
Examples of commercially available nonionic surfactants of this type include, for example the TERGITOL® line of nonionic surfactants including 15-S-9 (C
11
-C
15
linear alcohol; 9 moles EO) available from Union Carbide Corp. in; the NEODOL® line of nonionic surfactants including 45-9 (C
14
-C
15
linear alcohol; 9 moles EO) available from Shell Chemical Co. in Houston, Tex.; and C
13
-C
15
oxo-alcohol ethoxylates available from BASF under the tradename of LUTENSOL® AO.
The nonionic surfactants are useful from about 0.5 to about 50 parts by weight of the detergent formulation, and preferably from about 5 to about 30 parts by weight of the formulation. Nonionic surfactants are discussed in U.S. Pat. No. 3,422,021 incorporated herein by reference in its entirety, and in McCutchins,
Detergents and Emulsifiers
, 1973 Annual and in
Surface Active Agents
, Vol. 2, by Schwartz, Perry and Burch, Interscience Publishers, 1958 and in
Kirk-Othmer Concise Encyclopedia of Chemical Technology
, 1985 at pp. 1143-1144, each of which is incorporated by reference herein.
Other co-surfactants may be used in combination with the nonionic surfactants including anionic, cationic, and zwitterionic or amphoteric surfactants.
Useful zwitterionic or amphoteric surfactants include the betaines and sulfobetaines, i.e. sultaines. Examples of betaines include dodecyldimethylammonium acetate, tetradecyldimethylammonium acetate, hexadecyldimethylammonium acetate, alkyldimethylammonium acetate wherein the alkyl group averages about 14.8 carbon atoms in length, dodecyldimethylammonium butanoate, tetradecyldimethylammonium butanoate, hexadecyldimethylammonium butanoate, dodecyldimethylammonium hexanoate, hexadecyldimethylammonium hexanoate, tetradecyldiethylammonium pentanoate and tetradecyldipropyl ammonium pentanoate, and so forth.
Amphoteric surfactants may be broadly described as derivatives of aliphatic, or alkyl substituted hetero cyclic, secondary and tertiary amines in which the aliphatic radical may be straight chain or branched and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and at least one contains an anionic water-solubilizing group, e.g., carboxy, sulfonate and sulfate, and include, but are not limited to, N-coco-3-aminopropionic acid and acid salts
Delcotto Gregory
Ecolab Inc.
Vidas Arrett & Steinkraus
LandOfFree
Composition and method for prevention of discoloration of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Composition and method for prevention of discoloration of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition and method for prevention of discoloration of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2819025