Composition and method for color improvement of nitroxyl...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S415000, C524S417000, C524S414000, C524S421000, C524S419000, C524S418000, C524S490000, C524S474000

Reexamination Certificate

active

06767949

ABSTRACT:

The invention relates to a composition and process for color improvement of nitroxyl or nitroxyl ether containing polymers.
Stable free nitroxyl radicals or nitroxyl ethers are for example useful in controlled free radical polymerization (CFRP) and by this way incorporated into the polymer in a significant amount, leading in some cases to slightly colored polymers.
Controlled free radical polymerization (CFRP) of ethylenically unsaturated monomers has attracted continuing attention, because of its capability to produce polymers with narrow molecular weight distributions and controlled architecture such as block copolymers.
U.S. Pat. No. 4,581,429 to Solomon et al., issued Apr. 8, 1986, discloses a free radical polymerization process which controls the growth of polymer chains to produce short chain or oligomeric homopolymers and copolymers, including block and graft copolymers. The process employs an initiator having the formula (in part) R′R″N—O—X, where X is a free radical species capable of polymerizing unsaturated monomers. The reactions typically have low conversion rates. Specifically mentioned radical R′R″N—O. groups are derived from 1,1,3,3 tetraethylisoindoline, 1,1,3,3 tetrapropylisoindoline, 2,2,6,6 tetramethylpiperidine, 2,2,5,5 tetramethylpyrrolidine or di-t-butylamine.
U.S. Pat. No. 5,322,912 to Georges et al. issued Jun. 21, 1994 discloses a polymerization process using a free radical initiator, a polymerizable monomer compound and a stable free radical agent of the basic structure R′R″N—O. for the synthesis of homopolymers and block copolymers.
WO 98/13392 describes open chain alkoxyamine compounds which have a symmetrical substitution pattern and are derived from NO gas or from nitroso compounds which are suitable regulators for this type of radical polymerization.
EP-A-621 878 and EP-A-735 052 disclose a method for preparing thermoplastic polymers of narrow polydispersities by free radical-initiated polymerization, which comprises adding a free radical initiator and a stable free radical agent to the monomer compound.
WO 96/24620 describes a polymerization process in which very specific stable free radical agents are used, such as for example
bearing a hydrogen atom in &agr;-position to the nitrogen atom.
WO 98/30601 discloses specific nitroxyls based on imidazolidinones, which are also useful for stable free radical mediated polymerization.
In addition WO 98/44008 discloses specific nitroxyls based on morpholinones, piperazinones and piperazinediones.
All nitroxyl radicals useful in such controlled polymerization processes have inherently a reddish color.
Polymers made in the presence of such stable nitroxyl radicals or nitroxyl ethers are end-capped by the nitroxyl group. The bond, polymer to nitroxyl group however is a labile bond, which cleaves upon heating, liberating again the nitroxyl radical and giving thus color to the polymer. The color formation depends, therefore, on the concentration of nitroxyl radical
itroxylether used to synthesize the polymer.
As many processing conditions include a heating step, e. g. removing not reacted monomer, shaping parts by extrusion, injection molding, blow molding and the like, undesirable discoloration accompanies these processes.
The problem underlying the present invention is to counteract discoloration resulting from stable free nitroxyl radicals. This problem is solved by adding a reducing agent to the polymer, preferably during a processing step, such as extrusion or injection molding.
One subject of the invention is a composition comprising,
a) at least one oligomer, cooligomer, polymer or copolymer or blends thereof, containing a stable free nitroxyl radical
and b) a reducing agent;
with the proviso that the composition is essentially free of a polymerizable monomer.
Essentially free of a polymerizable monomer means that in some cases there may be a small amount of monomer left from manufacturing the polymer, which could not be completely removed. Preferably no monomer at all is present. Usually the excess monomer is present in an amount of a few ppm.
The nitroxyl radical may be present due to its admixture during polymerization, due to its admixture for monomer stabilization, due to its use as chain stopping agent or due to a grafting reaction after polymerization has been completed.
The nitroxyl radical may be present as a mixture with the polymer or it may be partially bound to the polymer.
The polymers, copolymers, oligomers or cooligomers which can be used in the present invention are listed below.
1. Polymers of monoolefins and diolefins, for example polypropylene, polyisobutylene, polybut-1-ene, poly-4-methylpent-1-ene, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbornene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), (VLDPE) and (ULDPE).
Polyolefins, i.e. the polymers of monoolefins exemplified in the preceding paragraph, preferably polyethylene and polypropylene, can be prepared by different, and especially by the following, methods:
a) radical polymerisation (normally under high pressure and at elevated temperature).
b) catalytic polymerisation using a catalyst that normally contains one or more than one metal of groups IVb, Vb, VIb or VIII of the Periodic Table. These metals usually have one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either p- or s-coordinated. These metal complexes may be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(III) chloride, alumina or silicon oxide. These catalysts may be soluble or insoluble in the polymerisation medium. The catalysts can be used by themselves in the polymerisation or further activators may be used, typically metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyloxanes, said metals being elements of groups Ia, IIa and/or IIIa of the Periodic Table. The activators may be modified conveniently with further ester, ether, amine or silyl ether groups. These catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).
2. Mixtures of the polymers mentioned under 1), for example mixtures of polypropylene with polyisobutylene, polypropylene with polyethylene (for example PP/HDPE, PP/LDPE) and mixtures of different types of polyethylene (for example LDPE/HDPE).
3. Copolymers of monoolefins and diolefins with each other or with other vinyl monomers, for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers and their copolymers with carbon monoxide or ethylene/acrylic acid copolymers and their salts (ionomers) as well as terpolymers of ethylene with propylene and a diene such as hexadiene, dicyclopentadiene or ethylidene-norbornene; and mixtures of such copolymers with one another and with polymers mentioned in 1) above, for example polypropylene/ethylene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA). LDPE/ethylene-acrylic acid copolymers (EAA), LLDPE/EVA, LLDPE/EAA and alternating or random polyalkylene/carbon monoxide copolymers and mixtures thereof with other polymers, for example polyamides.
4. Polystyrene, poly(p-methylstyrene), poly(&agr;-meth

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composition and method for color improvement of nitroxyl... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composition and method for color improvement of nitroxyl..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition and method for color improvement of nitroxyl... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3244111

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.