Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Cyclopentanohydrophenanthrene ring system doai
Reexamination Certificate
2001-01-05
2003-11-25
Travers, Russell (Department: 1617)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Cyclopentanohydrophenanthrene ring system doai
Reexamination Certificate
active
06653298
ABSTRACT:
FIELD OF INVENTION
The present invention relates to a composition.
In particular the present invention relates to a pharmaceutical composition comprising a compound in an amount to provide a dosage of no greater than 200 &mgr;g/day. The compound is a cyclic compound comprising ring system and a sulphamate group. The present invention also relates to the use of the composition in therapy applications.
BACKGROUND TO THE INVENTION
Estrogens play a major role in hormonal contraception, in menopausal hormone replacement therapy (HRT), and for treating gynaecological diseases (e.g. mammary carcinoma) and andrologic diseases (e.g. prostatic carcinoma). For HRT and contraception, estrogens are mainly used together with a gestagen, e.g. levonorgestrel, desogestrel, norethisterone, cyproterone acetate, chlormadinone acetate, dienogest.
When used for contraception, estrogens are needed for safely suppressing follicle maturation and ovulation, but in addition they replace the endogenous ovarian secretion of estradiol which is suppressed to a major extent. This replacement is important for maintaining an artificial menstrual cycle and other genital functions, which could not be done to any satisfactory extend by just using a gestagen.
In addition, endogenous and exogenous estrogens fulfil important central nervous and metabolic functions in the female organism: normal estrogen levels make a decisive contribution to a woman's well-being. Their presence in the system counteracts the development of cardiovascular diseases through various mechanisms: generation of “favourable” lipoprotein patterns in the blood, inhibition of lipid deposits in the walls of blood vessels, reduction in blood pressure by favourably influencing the vascular tonus, lowering of the perfursion resistance in essential vascular sectors, attenuation of contractile stimuli at the vascular muscle. The tunicae intimatae, when influenced by estrogens, release factors that counteract the formation of thrombi. Estrogens are also indispensible for preserving the bone structure in women. Their absence may result in destruction of the bone (osteoporosis). These latter “central nervous” and “metabolic” effects of estrogens are a main aspect of HRT. It can be considered that estrogens have analogous functions in the male organism, and that their withdrawal results in similar disorders as in women. One difference between the two sexes is that hormone production in males ceases less regularly and at a later age than that in women.
But notwithstanding all positive aspects of estrogen therapy there are unsolved problems, too, which restrict the therapeutic use of estrogens or entail undesired effects.
The known estrogens show pharmacokinetic deficits. Natural estrogens (estradiol, oestrone, oestrone sulphate, esters or estradiol, oestriol) become bioavailable only to a very low degree when taken orally. This degree may vary so much from person to person that general dosage recommendations cannot be given. Fast elimination of the substances from the blood is another problem. Estrogen replacement under HRT often has to be adjusted to the individual.
The same is true of synthetic estrogens. The most important synthetically altered estrogenic steroid is ethinyl estradiol (EE). This estrogen is dominant in oral hormonal contraception. Apart from EE, mestranol is used in a few cases; this is a “prodrug” that is metabolised to EE in the organism. When applied orally to humans, EE has a much better bioavailability than the natural estrogens mentioned above, but its oral bioavailability varies to an large extend from individual to individual. Several authors have pointed to this as well as to the fact that concentrations in the blood proved to be highly irregular after oral application of this substance (Goldzieher, J. W. 1989, Goldzieher, J. W. 1990, Humpel, M. 1987, Kuhnz, 1993).
In addition, the known estrogens show pharmacodynamic deficits. After resorption from the intestinal lumen, orally applied active ingredients enter the organism via the liver. This fact is of specific importance for estrogenic agents as the liver is a target organ for estrogens; oral intake of estrogens results in strong estrogenic effects in the liver. The secretion activity that is controlled by estrogens in the human liver includes synthesis of transfer proteins CBG, SHBG, TBG, angiotensinogen, several factors that are important for the physiology of blood clotting, and lipoproteins. If natural estrogens are introduced to the female organism while avoiding passage through the liver (e.g. by transdermal application), the liver functions mentioned remain virtually unchanged. Therapeutically equivalent doses of natural estrogens (see definition above), when applied orally, result in clear responses of hepatic parameters: increase of SHBG, CBG, angiotensinogen, HDL (high density lipoprotein). These hepatic effects of estrogen are clearly stronger when, instead of natural estrogens, equine estrogen formulations (so-called conjugated estrogens) are used (Cambell, S. et al., 1981). Ethinyl estradiol and DES have an even greater hepatic oestrogenicity.
When referring to antigonadotropic properties, EE is about 4 to 18 times more estrogenic in the liver than orally applied natural estrogens are (Campbell, S. et al., 1981). This is a very unfavourable dissociation of properties.
These deficits are of considerable clinical significance when known natural and synthetic estrogens are to be applied.
A known complication that may occur after applying high doses of estrogen to males suffering from prostatic carcinoma is fatal thromboembolism. The potential of EE to produce side effects in the liver determines, though in a somewhat weakened form, the strategy of oral hormonal contraception. With a view to desired contraceptive effects and maintenance of the menstrual process on the one hand, and the need to take into account the considerable side effect potential on the other, controlling EE levels in the blood may be compared to a tightrope walk. It is quite possible that a large percentage of women cannot apply oral contraceptives because either menstrual bleeding abnormalities or estrogen-related side effects exceed the tolerance threshold.
Evidence suggests that oestrogens are the major mitogens involved in promoting the growth of tumours in endocrine-dependent tissues, such as the breast and endometrium. Although plasma oestrogen concentrations are similar in women with or without breast cancer, breast tumour oestrone and oestradiol levels are significantly higher than in normal breast tissue or blood. In situ synthesis of oestrogen is thought to make an important contribution to the high levels of oestrogens in tumours and therefore inhibitors, in particular specific inhibitors, of oestrogen biosynthesis are of potential value for the treatment of endocrine-dependent tumours.
Over the past two decades, there has been considerable interest in the development of inhibitors of the aromatase pathway—which converts the androgen precursor androstenedione to oestrone. However, there is now evidence that the oestrone sulphatase (E1-STS) pathway, i.e. the hydrolysis of oestrone sulphate to oestrone (E1S to E1), as opposed to the aromatase pathway, is the major source of oestrogen in breast tumours. This theory is supported by a modest reduction of plasma oestrogen concentration in postmenopausal women with breast cancer treated by aromatase inhibitors, such as aminoglutethimide and 4-hydroxyandrostenedione, and also by the fact that plasma E1S concentration in these aromatase inhibitor-treated patients remains relatively high. The long half-life of E1S in blood (10-12 h) compared with the unconjugated oestrogens (20 min) and high levels of steroid sulphatase activity in liver and, normal and malignant breast tissues, also lend support to this theory.
PCT/GB92/01587 teaches novel steroid sulphatase inhibitors and pharmaceutical compositions containing them for use in the treatment of oestrone dependent tumours, especially breast cancer. These steroid sulphatase inhibitors are su
Elger Walter
Lloyd Potter Barry Victor
Proske Heinrich-Thomas
Reed Michael John
Roddersen Gudrun
Bahar Mojdeh
Frommer & Lawrence & Haug LLP
Kowalski Thomas J.
Sterix Limited
Travers Russell
LandOfFree
Composition does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3125699