Plastic and nonmetallic article shaping or treating: processes – Forming articles by uniting randomly associated particles – Stratified or layered articles
Reexamination Certificate
1998-03-26
2003-11-25
Thibodeau, Paul (Department: 1773)
Plastic and nonmetallic article shaping or treating: processes
Forming articles by uniting randomly associated particles
Stratified or layered articles
C264S113000, C264S121000, C425S080100, C425S081100, C425S083100
Reexamination Certificate
active
06652789
ABSTRACT:
FIELD OF INVENTION
The present invention relates to a method and apparatus for forming a composite veneer product from wood strands and a composite veneer product so produced
BACKGROUND OF THE INVENTION
Generally, forming systems for making composite products employ formers wherein the strands are deposited onto a forming surface to form a mat of strands on the surface (e.g. a caul plate or the like) that is used in the subsequent pressing or consolidating stage to form the surface on the consolidated product.
In making fiberboard wood fibers (as opposed to wood strands) are cast into the air and deposited on a forming surface by gravity or possibly by suction through the forming surface. See for example, U.S. Pat. No. 3,880,975 issued Apr. 29, 1975 to Lundmark. This technique, i.e. condensing of the material into a mat using a vacuum on the side of the forming wire remote from the supply of material, is applied to form fibrous mats from wood fibers, i.e. very small elements (fibers) relative to strand as used in manufacture of strand board products. Each strands, for example, is composed of thousands of fibers bonded together in their natural state.
The fibers used in the manufacture of fiber board are liberated by some form of mechanical disintegration technique e.g. grinding or refining or chemical technique to separate discrete fibers from one another. In fiberboard manufacture the fibers generally are randomly oriented, though it has been suggested to use electrostatic forces to orient the fibers.
In the manufacture of strand board the strands are dispensed from a source of supply, e.g. a bin, and simply fall onto a collecting surface and depending on the process may or may not be oriented. When an oriented strand board (OSB) is made the strands are oriented to be reasonably parallel to an axis of the consolidated product. See for example, U.S. Pat. No. 3,115,431 issued Dec. 24, 1963 to Stokes et al., U.S. Pat. No. 4,380,285 issued Apr. 19, 1983 to Burkner et al. and U.S. Pat. No. 5,325,954 issued Jul. 5, 1994 to Crittenden et al. or U.S. Pat. No. 5,487,460 issued Jan. 30, 1996 to Barnes, all of which show different devices for laying mats for consolidation wherein the strands are oriented before they pass on to the mat so that the mat contains oriented strands.
A plurality of separate forming heads are generally used to each to form a layer of strands directly onto the surface of a preceding layer of strands to form a lay-up that will consist of at least several such layers formed directly one on top of the other. Each of the layers will be several strand thickness' thick and the combined lay-up will be at least about 7 or 8 strand thickness thick.
It will be apparent that in each of these forming systems, the mat or lay-up formed generally consists of a plurality of strands or fibers piled one on top of the other to form a lay-up mat many strands (or fibers) thick so that the resultant consolidated product produced form from such a strand lay-up mat will have a thickness of at least a quarter inch which corresponds for conventional strandboard forming lay-up mat of about 7 strand thickness (assuming about 30% compression of strands 0.05 inches thick).
As above indicated this strand lay-up mat is made using a plurality of forming heads so that each head produces a layer of about 2 to 4 strands thick
It is necessary to make consolidated composite products from a plurality of strand layers i.e. form by a plurality of forming heads forming layers one directly on the top of the other because of the inability of the previously known laying processes to form the mat or lay-up of say a single layer thickness with a sufficiently uniform weight distribution over the area of the consolidated product i.e. when the thickness of the lay-up being consolidated is too small.
BRIEF DESCRIPTION OF THE PRESENT INVENTION
It is an object of the present invention to provide a method and apparatus forming a composite veneer product from strand particularly wood strands.
It is also an object of the present invention to provide a composite product formed from a plurality of composite veneers laminated together into a single layered product.
Broadly, the present invention relates to a method of forming a composite wood veneer product comprising feeding wood strands from a supply of strands in a supply station at a metered rate, entraining said strands in an air stream in an entraining zone and carrying said strands in said air stream along a confined path, forming a. veneer lay-up consisting of at least one layer of strand and less than five layers of strands on a foraminous forming surface communicating with said confined path through a wall defining said confined path by drawing air through said foraminous forming surface in an amount sufficient to hold and distribute said strands on said foraminous forming surface and form said veneer lay-up layer, carrying said veneer lay-up layer so held to said foraminous forming surface from said path, transferring said veneer lay-up layer onto a collecting surface, returning said strands not forming said veneer lay-up layer to said supply station, separating entraining air from said strands, returning at least some said air separated from said strands and of said air drawn through said foraminous forming surface to said entraining zone and returning said strands not forming said veneer lay-up layer to said supply of strands in said supply station.
Preferably, a plurality of different foraminous forming surfaces each form a separate veneer lay-up layer and wherein a plurality of said veneer lay-up layers are piled one on top of the other to form a layered lay-up.
Preferably, said layered lay-up is further processed by consolidation under heat and pressure into a consolidated composite veneer product
Preferably, said strands are oriented as they passed onto said foraminous forming surface to form an oriented veneer lay-up layer with strands oriented in a direction substantially parallel to a longitudinal axis of said oriented veneer lay-up layer.
The present invention also broadly relates to a device for forming a composite product comprising a supply source of strands, means for dispensing said strands from said supply source at a metered rate, wall means defining a confined path, a strand entraining zone, means for passing air through said strand entraining zone and said confined path at a velocity sufficient to entrain and transport said strands along said confined path, forming means including at least one movable foraminous forming surface protruding through said wall means, means for drawing air through said foraminous forming surface from a side of said forming surface remote from said path to condense and distribute some of said strands from said path onto said foraminous forming surface to form a composite veneer lay-up layer of a thickness of at least one and not more than five of said strands on said foraminous forming surface, a movable collecting surface, means for transferring said veneer lay-up layer from said forming surface onto said transfer surface, means to separate air from said strands not forming said veneer lay-up layer and duct means for directing air separated by said means to separate to said means for passing air for recirculation through said path, means for directing air drawn through said foraminous forming surface to said means for passing air for recirculation through said path and means for delivering strands not forming said veneer lay-up layer back to said supply source of strands.
Preferably, said wherein said drawing air through said foraminous forming surface comprises dividing flow of air through said foraminous forming surface into at least 3 separate flows each from a different zone which zones are spaced across of said confined path.
Preferably, said separate flows each have essentially same the flow rate.
Preferably, said means for drawing air through said foraminous forming surface includes partition means constructed to direct air flowing through separate zones of said foraminous forming surface space acro
Kolisch Hartwell Dickinson & McCormack & Heuser
Kruer Kevin R.
Thibodeau Paul
Weyerhaeuser Company
LandOfFree
Composite veneer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Composite veneer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite veneer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3117089