Composite trunking

Multiplex communications – Pathfinding or routing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S392000, C370S902000, C709S238000, C709S244000

Reexamination Certificate

active

06359879

ABSTRACT:

BACKGROUND OF THE INVENTION
Data communication between computer systems for applications such as web browsing, electronic mail, file transfer, and electronic commerce is often performed using a family of protocols known as IP (Internet protocol) or sometimes TCP/IP. As applications that use extensive data communication become more popular, the traffic demands on the backbone IP network are increasing exponentially. It is expected that IP routers with several hundred ports operating with aggregate bandwidth of Terabits per second will be needed over the next few years to sustain growth in backbone demand.
As illustrated in
FIG. 1
, the Internet is arranged as a hierarchy of networks. A typical end-user has a workstation
22
connected to a local-area network or LAN
24
. To allow users on the LAN to access the rest of the Internet, the LAN is connected via a router R to a regional network
26
that is maintained and operated by a Regional Network Provider or RNP. The connection is often made through an Internet Service Provider or ISP. To access other regions, the regional network connects to the backbone network
28
at a Network Access Point (NAP). The NAPs are usually located only in major cities.
The network is made up of links and routers R. In the network backbone, the links are usually fiber optic communication channels operating using the SONET (synchronous optical network) protocol. SONET links operate at a variety of data rates ranging from OC-3 (155 Mb/s) to OC-192 (9.9 Gb/s). These links, sometimes called trunks, move data from one point to another, often over considerable distances.
Routers connect a group of links together and perform two functions: forwarding and routing. A data packet arriving on one link of a router is forwarded by sending it out on a different link depending on its eventual destination and the state of the output links. To compute the output link for a given packet, the router participates in a routing protocol where all of the routers on the Internet exchange information about the connectivity of the network and compute routing tables based on this information.
In recent years the volume of Internet traffic has been quadrupling each year. At the same time, the speed of the optical links that carry this traffic has been increasing at a slower rate, quadrupling every three years. Thus, to keep up with traffic demands, networks have added multiple links or trunks between network access points to scale bandwidth at a rate faster than the increase in individual link bandwidth. These multiple trunks may be transmitted on separate fibers or as separate channels wave-division multiplexed over a single fiber, or both.
Wavelength-division multiplexing (WDM) is an approach to increasing bandwidth between NAPs by multiplexing several channels on a single fiber. With this approach an existing fiber between two NAPs, which originally carried a single channel, is enabled to handle a number (typically 20) channels of the same rate. To accomplish this, a WDM multiplexer is used to combine several channels by modulating each with a slightly different optical wavelength or color of light. The channels, each at a different wavelength, are then combined into a single optical fiber. At the far end of the fiber, separating out the different colors of light demultiplexes the channels. Upgrading one or more fibers to WDM results in large numbers of parallel trunks between NAPs.
SUMMARY OF THE INVENTION
Prior art routers treat each of the multiple trunks between two NAPs, and hence two routers, as ordinary links. Each trunk is connected to a router port and all traffic is forwarded over a specific trunk. This has two significant disadvantages: the complexity of the routing table is increased, and it becomes difficult to balance load across the trunks. Instead of simply directing all westbound traffic out of New York to Chicago, for example, with prior art routers it is necessary to direct distinct portions of this traffic over each of the N trunks between the two cities. The traffic is divided over these trunks by making a different routing table entry for each portion of traffic to direct it over a particular trunk.
Prior art routers also have difficulty balancing the load across the set of trunks between two points. Traffic is divided over these trunks by the routing table, and hence by destination address. At different points in time, the traffic to a set of destinations mapped to one trunk may be greater than the traffic to the set of destinations mapped to a second trunk leading to load imbalance between the trunks.
Both of these problems, routing table complexity and load imbalance, increase in magnitude as the number of trunks between a pair of routers increases.
The router of the invention overcomes the limitation of prior art routers by treating all of the links or trunks to a given destination as a single composite trunk. With composite trunking, all of the westbound traffic out of New York, for example, would be directed onto the single composite trunk to Chicago rather than be divided into N separate portions, one for each of the N links to Chicago.
When a westbound packet arrives at the New York router, the routing table lookup selects the composite trunk to Chicago as the outgoing link for the packet. A separate trunk selection step then picks one of the multiple trunks to Chicago to carry this particular packet and the packet is forwarded to that trunk. The trunk selection is performed to balance load across the trunks while preserving packet ordering within individual flows. It may also be performed to select the ‘closest’ output port for a given packet.
The use of composite trunks has three primary advantages. First, it simplifies routing tables by allowing large groups of destinations to be mapped to a single composite output port rather than requiring that many smaller groups be individually mapped to distinct output ports. Second, composite trunking makes it easier to balance load across multiple trunks by allowing load to be dynamically shifted across the individual trunks making up a composite trunk without changing the routing function. Finally, composite trunking can give more efficient use of fabric channels in a direct fabric network by selecting the output trunk that is nearest the packet waiting to be transmitted.
In accordance with the invention, a network router comprises a plurality of trunk ports, including a composite port of plural ports. Those ports connect to plural trunks which serve as a composite trunk to a common destination. A routing fabric within the router transfers data packets between trunk ports. An output port selector selects an output port for a packet from a composite port. The router identifies a destination of packets, selects one of plural trunks forming a composite trunk to the destination and forwards the packet toward the destination on the selected trunk.
Preferably, the router maintains ordering of packets within a flow by routing the packets of the flow in a single fabric route within the router and over a single trunk of the composite trunk. The output port selector is able to balance load across the trunks of a composite trunk and may even provide dynamic balancing by changing port selection in response to changes in load. The output port selector may favor output ports having lesser distances to be traversed on the routing fabric from an input port.
Preferably, the output port selector determines the output port by table lookup. More specifically, a routing table maps destination addresses to composite trunks, and a forwarding table maps composite trunks to sets of routes within the routing fabric.
The invention is particularly applicable to the Internet where the destination addresses are Internet protocol addresses. The preferred routing fabric is a three dimensional torus.


REFERENCES:
patent: 4340775 (1982-07-01), Gesek et al.
patent: 5546379 (1996-08-01), Thaweethai et al.
patent: 0 649 098 (1995-04-01), None
patent: 0 863 646 (1998-09-01), None
patent: 0 910 195 (1999-04-01), None
Stunkel, C.B., e

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composite trunking does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composite trunking, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite trunking will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2834059

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.