Stock material or miscellaneous articles – Structurally defined web or sheet – Discontinuous or differential coating – impregnation or bond
Reexamination Certificate
1998-11-20
2002-05-28
Hess, Bruce H. (Department: 1774)
Stock material or miscellaneous articles
Structurally defined web or sheet
Discontinuous or differential coating, impregnation or bond
C428S200000, C428S204000, C428S206000, C428S323000, C428S488410, C428S500000
Reexamination Certificate
active
06395375
ABSTRACT:
FIELD OF THE INVENTION AND RELATED ART
The present invention relates to a composite thermal transfer sheet, and, more particularly to a co-winding type composite thermal transfer sheet wherein a thermal transfer sheet is temporarily bonded to a transfer-receiving material such as paper and, a sheet-type composite thermal transfer sheet.
Hitherto, in a case where output from a computer or word processor is printed by a thermal transfer system, there has been used a thermal transfer sheet comprising a substrate film and a heat-fusible ink layer disposed on one surface side thereof.
Such a conventional thermal transfer sheet comprises a substrate film comprising a paper having a thickness of 10 to 20 &mgr;m such as capacitor paper and paraffin paper, or comprising a plastic film having a thickness of 3 to 20 &mgr;m such as polyester film and cellophane film. The above-mentioned thermal transfer sheet has been prepared by coating the substrate film with a heat-fusible ink comprising a wax and a colorant such as dye or pigment mixed therein, to form a heat-fusible ink layer on the substrate film.
When printing is effected on a transfer receiving material by using such a conventional thermal transfer sheet, the thermal transfer sheet is supplied from a roll thereof, while a continuous or sheet-like transfer-receiving material is also supplied, so that the former and the latter are superposed on each other on a platen. Then, in such a state, heat is supplied to the thermal transfer sheet from the back side surface thereof by means of a thermal head to melt and transfer the ink layer, whereby a desired image is formed.
However, even when the above-mentioned conventional thermal transfer sheet is as such intended to be used in a facsimile printer using a conventional heat-sensitive color-forming paper, the thermal transfer sheet cannot be used in such a facsimile printer since the above-mentioned recording paper per se develops a color under heating and the facsimile printer does not include a conveying device for a transfer-receiving material. Such a problem is also posed in a special printer such as large plotter.
In order to solve the above-mentioned problem, there has been proposed a method wherein a thermal transfer sheet and a transfer-receiving material are temporarily bonded to each other in advance and wound into a roll form so that the thermal transfer sheet may be adapted to a facsimile printer or the device used therefor may be simplified or miniaturized (Japanese Utility Model Publication No. 2628/1983).
Such a co-winding type composite thermal transfer sheet, is required to have various performances such that the thermal transfer sheet is tightly bonded to the paper so as to provide no wrinkle or deviation, both of these are easily peeled from each other after thermal transfer operation, the ink layer is exactly transferred to the paper in the transfer region, and the ink layer is not transferred to the paper at all in the non-transfer region so that the paper is not contaminated. However, the conventional composite-thermal transfer sheet does not fully satisfy such requirements.
On the other hand, when printing is effected by using such a composite thermal transfer sheet, printing trace remains on the thermal transfer sheet after printing. Therefore, when the printed information is secret, the secret is leaked due to the printing trace of the used thermal transfer sheet.
Further, in the case of the co-winding type composite thermal transfer sheet, both of the thermal transfer film and the transfer-receiving material are discharged from a printer and cut so as to provide an appropriate length thereof. In such a case, the composite thermal transfer sheet is charged due to friction in a period of from the preparation thereof to the use thereof, during conveyance thereof in the printer, and at the time of printing. On the basis of such charging, the resistance of a thermal head is changed at the time of printing, and the thermal head is erroneously driven due to discharge so that the resultant printed letters are disturbed. Further, when the thermal transfer film is peeled from the paper after the discharge thereof from the printer, the thermal transfer film is charged in most cases. Therefore, the peeled thermal transfer film clings to the transfer-receiving material, or a printer, or a desk, clothes, etc., and it is quite troublesome to deal with it.
In general, the thermal transfer film may easily be peeled from the transfer-receiving material. Therefore, in the end portion thereof, the thermal transfer film may easily be peeled from the transfer-receiving material so that it is not suitably fed to the printer, or the thermal transfer film is bent or wrinkled. As a result, there is posed a problem good printed letters cannot be obtained.
Further, in the above-mentioned co-winding type composite thermal transfer sheet, when the transfer-receiving sheet is thick, the diameter of the roll thereof inevitably becomes large and such a roll cannot be housed in a compact printer. From such a viewpoint, there is proposed a sheet-type composite thermal transfer sheet which has been cut into a desired size thereof, such as so-called “A-size” or “B-size” (Japanese Laid-Open Utility Model Application No. 161757/1988, Japanese Laid-Open Patent Application No. 258989/1989). In this case, however, the thermal transfer sheet is very easily peeled from the transfer-receiving material as compared with the co-winding type roll so as to cause some troubles such that the composite sheet is difficult to be fed to a printer, the thermal transfer sheet deviates from the transfer-receiving material at the time of printing, either one of them is bent, etc.
SUMMARY OF THE INVENTION
An object of the present invention is to solve the above-mentioned problems and to provide a co-winding type composite thermal transfer sheet which is excellent in bonding property and peeling property, and provides printed letters having a good resolution without ground staining.
Another object of the present invention is to provide a co-winding type composite thermal transfer sheet which is capable of providing two sets of printed letters corresponding to one sheet thereof, and is excellent in bonding property and peeling property, and provides printed letters having a good resolution without ground staining.
A further object of the present invention is to provide a sheet-type composite thermal transfer sheet which is excellent in bonding property and peeling property, and provides printed letters having a good resolution without ground staining, and is free of troubles of paper feeding and printing.
A further object of the present invention is to provide a co-winding type composite thermal transfer sheet which is excellent in bonding property and peeling property, and provides printed letters having a good resolution without ground staining, and is free of troubles of paper feeding and printing.
A further object of the present invention is to provide a co-winding type composite thermal transfer sheet which is excellent in bonding property and peeling property, and provides printed letters having a good resolution without ground staining, and is free of problems caused by the used thermal transfer film.
A further object of the present invention is to provide a composite thermal transfer sheet which is excellent in long-term storage property, conveying resistance, etc.
A still further object of the present invention is to provide a package of a sheet-type composite thermal transfer sheet which is excellent in moisture resistance.
According to a first aspect of the present invention, there is provided a composite thermal transfer sheet comprising; a thermal transfer sheet comprising a substrate film and a heat-fusible ink layer disposed on one surface side thereof; a transfer-receiving material; and a temporary adhesive layer capable of peelably bonding the heat-fusible ink layer of the thermal transfer sheet to the transfer-receiving material, wherein the temporary adhesive layer comprises adhesive particles having a lo
Imamura Hirokatsu
Kaneko Hirokazu
Nakamura Koichi
Dai Nippon Insatsu Kabushiki Kaisha
Grendzynski Michael E.
Hess Bruce H.
Ladas & Parry
LandOfFree
Composite thermal transfer sheet does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Composite thermal transfer sheet, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite thermal transfer sheet will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2872935