Composite structural reinforcement device

Fabric (woven – knitted – or nonwoven textile or cloth – etc.) – Woven fabric – Including a free metal or alloy constituent

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S179000, C052S578000, C052S586200, C138S099000, C252S06251C, C264S274000, C442S006000, C442S019000, C442S052000, C442S058000, C428S033000, C428S053000, C428S060000, C428S101000, C428S161000, C428S163000, C428S167000, C428S141000, C428S582000, C428S583000, C428S900000

Reexamination Certificate

active

06774066

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to the field of structural reinforcement devices, and in its preferred embodiments more specifically relates to an interlocking, self-aligning, magnetically detectable reinforcement device structure.
BACKGROUND OF THE INVENTION
All structural members are subject to deterioration and damage over time, and it is often necessary to repair and/or reinforce structural members to preserve or restore their integrity and extend their useful lives. The problems resulting from deterioration affect pipelines, which are subject to deterioration due to several factors, including sulfate reducing bacteria, cathodic actions, and third party damage. The problem is certainly not limited to such pipelines, and also affects other structures, such as concrete columns, which are also subject to deterioration and to damage. However, the problem is particularly acute for pipelines, because they are difficult to inspect, and carry gases and liquids under high pressure over long distances in extensive systems. Pipeline deterioration can be highly problematic, not only because of economic factors, which are significant, but also because of the potential hazards to the environment and to human safety associated with release of many of the substances transported through pipelines.
Pipelines are typically constructed of metallic pipe, and it has become a relatively common practice to monitor the integrity of pipelines by sending a device, often referred to as a “smart pig”, through the line. This device induces a strong magnetic field and records the deviation of the field to establish pipe wall integrity. If a pipeline has developed a significantly corroded area, the resulting anomaly, or lack of continuity, in the magnetic field can be detected. Since the location of the detection device can be monitored or determined, the location of the corroded area can be determined and repaired.
Various approaches to repairing and reinforcing weak areas in pipelines have been developed over the years. Similar approaches are also used for repair and reinforcement of other structural members. In general, the prior art approaches include metallic devices, often in the form of split sleeves, which are welded or otherwise attached to the pipeline around the weak spot; and non-metallic devices, generally in the form of resin impregnated uni-directional fiber tapes that are wound around the pipe and secured by some form of adhesive. Both of these prior art approaches can be reasonably effective, but both suffer from certain problems and drawbacks. The typical prior art metallic repair technology requires welding or other “hot working” to attach the device to the pipeline, which may create significant hazards if the fluid carried in the pipeline is explosive or flammable. The welding process, especially in field repair conditions, requires skilled operators, and may nonetheless result in incomplete welds or later weld failures, which can give rise to future pipeline failures. Problems can arise from galvanic action between the pipeline and the metallic repair material. The use of sleeves that are bolted in place around the pipeline also creates problems and results in uncertain repairs. With bolted sleeves, a resilient liner is normally required between the sleeve and the pipe, and sealing of the leak or corroded area depends on the formation of a complete seal at the time of repair and upon the continued integrity of the liner over an extended period of time. Bolted sleeves and resilient liners do not preclude the entry of moisture between the sleeve and the pipe, and any deterioration of the sleeve may allow fluid to escape from the pipeline. As a result of these deficiencies in metallic repair technology, it is often necessary to reduce the pressure of the fluid carried in the pipeline, thereby reducing the flow rate.
Prior art non-metallic repair and reinforcement technology has its own set of problems and difficulties. Typical prior art resin impregnated tapes incorporate unidirectional fibers, which are subject to longitudinal shearing problems. The occurrence of shear compromises structural integrity and also creates an entry point for moisture, which can “wick” through the fiber. In an effort to control shearing, a resin filled polyethylene/polypropylene tape is often used to cover leading and trailing edges. However, the tape surface does not effectively bond with existing adhesive systems, and it is difficult to eliminate voids and moisture penetration. Attachment of the non-metallic tape devices of the prior art relies upon the bonding strength of the adhesive used, but it is difficult to ensure uniform adhesive coverage and thus uniform and effecting bonding. The “wrap pattern” can be difficult to control with conventional devices, leading to variations in coverage and reductions in integrity. A significant disadvantage of the prior art non-metallic technology is its transparency to pipeline detection devices. Even if a repair is adequately made, the repaired location will continue to be registered as a void or leak in the pipeline, creating a monitoring problem, placing a greater burden on the pipeline operators to interpret anomalies previously repaired, and reducing the overall reliability of detection devices in monitoring pipeline integrity.
There remains a definite need for a repair and reinforcement device that achieves desired results without the disadvantages and drawbacks of the prior art, that improves reliability and integrity of the repair or reinforcement, that promotes uniformity in application, that avoids alignment problems, that is safe to use without fire or explosion hazard, and that is detectable by conventional pipeline monitoring devices.
SUMMARY OF THE INVENTION
The present invention provides a cured pre-formed composite device for pressure containment, and/or structural reinforcement. The invention encompasses a device formed as a metallic
on-metallic hybrid structure that is magnetically detectable, and also encompasses devices that are self-locking and self-aligning. The device of the invention is less susceptible to shearing than structures known in the prior art, and provides superior corrosion resistance for structural members such as steel piping and concrete columns. The cured pre-formed composite device is applied by wrapping the device, with or without an adhesive, in a plurality of layers around degraded structural members to provide pressure containment and/or structural reinforcement. All voids and/or tented areas in the structural member are filled with a load transfer material prior to installation of the device.
The material of construction of the invention generally comprises a cured metallic
on-metallic composite hybrid, formed into a device for use as structural reinforcement and/or pressure containment. The preferred laminate construction of the device preferably comprises a ferrous or ferrous-based mesh, bands, or sheets of magnetic material or other materials which influence magnetic fields, sandwiched between plies of resin impregnated high tensile strength fiberglass and/or other advanced materials such as carbon/graphite and aramid fibers, pre-formed into a thin multi-ply device detectable by magnetic inspection devices. The magnetically detectable material is sandwiched the entire width or a portion thereof and may be either continuous or intermittently placed along the length of the device. Although the material of the invention may be formed into almost any configuration as appropriate for its intended use, it is contemplated that the material will most typically be formed into generally shape-retentive devices configured as “coils”. The shape of coils in which the cured pre-formed composite device is formed is determined by the fabrication tooling, and may be cylindrical, or rectangular, or any derivation thereof, depending upon the intended use. Both the width and the total length of the composite device is determined by the shape, size and required reinforcement of the structural member to wh

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composite structural reinforcement device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composite structural reinforcement device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite structural reinforcement device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3287827

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.