Composite structural member

Static structures (e.g. – buildings) – Machine or implement

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052SDIG006, C411S461000, C411S466000, C411S467000, C411S468000

Reexamination Certificate

active

06457292

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention is directed toward a flange member. The invention is further directed toward a composite structural member employing the flange member.
This invention is also directed toward a method for making the composite structural member employing the flange member.
The invention is further directed toward an apparatus for use in making the composite structural member.
2. Description of the Related Art Including Information Disclosed Under CFR §§ 1.97-1.99
Composite structural members, such as I-beams, are known. These composite structural members usually have separate flanges joined to a central web in making beams, particularly I-beams. The materials usually employed, in both the flanges and webs, are wood; wood-based, engineered products such as plywood; and metal such as steel. Composite structural members employing metal flanges with a wooden web are efficient and cost-effective. The wooden web provides a desirable insulation factor, compared to a metal web and allows openings to be easily made through it for services. The metal flanges provide high strength and stability for the member. In addition the metal flanges can be provided with integral fasteners formed by punching teeth out of the flanges. The teeth can be easily pressed into the web to securely join the flanges to the web.
One form of a composite structural member employing a wood-based web and metal flanges is shown in U.S. Pat. No. 4,281,497. Each metal flange member is formed with side walls extending from a base. Fasteners are usually formed integrally in the side walls of the flange. An edge of the web is located against the base and the side walls of the flange, with the fasteners formed therein, are bent about the base against the web to form a pocket to receive an edge portion of the web. At the same time the fasteners in the side walls are pressed into the web to fasten the flange to the web. In this construction, the fasteners are formed in the flange, in a separate operation, before the flange and web are assembled. This additional step makes the assembling of the composite member relatively expensive.
It is preferred to have the side walls of the flange member doubled so as to have the pocket formed by side walls and base of the flange, which pocket receives an edge portion of the web, more rigid and thus more likely to tightly confine the web making the bearing capacity of the web stronger and thus making the composite member stronger. An example of such a construction is shown in U.S. Pat. No. 4,937,998. However, using metal flange members, with doubled side walls, with a wooden web, and with integral fasteners in the doubled side walls, is expensive. Openings must be provided in the inner wall panel of the doubled side wall to allow passage of the integral fasteners formed in the outer panel of the doubled side wall. The integral fasteners, and the openings for the fasteners, are formed in the flange in a separate operation, before assembly of the flange and web, again making the assembly relatively expensive.
Both types of composite members described above have the fasteners, joining the flange to the web, integrally formed in the flange in a single layer of sheet metal. The sheet metal layer must therefore be relatively thick to provide fasteners strong enough to penetrate the web. Using relatively thick sheet metal flanges, which may be thicker than the thickness required to provide the necessary strength for the composite member, increases the cost of the members.
SUMMARY OF THE INVENTION
It is one purpose of the present invention to provide a flange for a composite structural member with integral fasteners formed in the side walls of the flange with the fasteners formed during assembly of the flange to a web. Forming the fasteners during assembly of the flange to the web reduces the cost of manufacture making the assembled composite structural member cheaper. The integral fasteners are preferably formed in or adjacent the free edges of the side walls. The side walls can be made from single or double panels .
It is another purpose of the present invention to provide a flange for a composite structural member having side walls that are double paneled, the panels joined at a fold line spaced from the base wall of the flange. Integral fasteners are formed in the sidewalls of the flange at the fold lines and thus are also doubled paneled with their panels joined along the fold line. This construction makes the fasteners very strong and they can easily penetrate the web. With stronger, integral, fasteners, the flanges can be formed from thinner metal material than that normally used where single thickness fasteners are formed. The use of thinner material further reduces the cost of the composite member. The flanges with double paneled fasteners can have the fasteners formed during the assembly of the flange to the web. It is another purpose of the present invention to provide a method of assembling a flange to a web in the making of a composite structural member, which method involves the step of forming integral fasteners in the side walls of the flange while assembling the flange to the web.
It is a further purpose of the present invention to provide a machine for assembling a flange to a web in the construction of a composite structural member. The machine forms fasteners in the side walls of a flange while moving the flange and web together as a unit, the fasteners then being used to connect the flange to the web.
The invention is particularly directed to a flange for use in making a composite structural member, the flange having a base wall and two side walls extending from the base wall, the base wall and side walls forming a pocket to receive an edge portion of a web member. Each side wall is doubled with an inner wall panel and an outer wall panel joined along a fold line, the fold line spaced from, and parallel to, the base wall. Fasteners are formed from each side wall along the fold line, each fastener extending transversely from the side wall toward the other side wall.
The invention is also directed toward a composite structural member incorporating the above metal flange joined, with the fasteners, to a web made of fastener penetrable material.
The invention is also particularly directed toward a method of making a composite structural member comprising providing an elongated metal flange having a pocket, the pocket formed by two side walls extending from a base wall; and an elongated web, made of fastener penetrable material, having opposed narrow edges. A portion of the web is mounted within the pocket of the flange with one edge abutting the base wall to form an assembled unit. The assembled unit is then fed in a longitudinal direction. Fasteners are then formed from the side walls of the flange while the side walls diverge from the web. The side walls are then moved against the web to press the fasteners into the web to securely join the flange to the web.
In a preferred embodiment, the side walls of the flange are doubled, each side wall have inner and outer wall panels, the wall panels joined along a fold line spaced from the base wall. The fasteners are integrally formed in the side walls adjacent the fold line, punched out along a line that intersects the fold line, and then bent laterally from the side wall.
The invention is further particularly directed toward a machine for use in making a composite structural member from an elongate web made from fastener penetrable material, the web having opposed narrow edges, and an elongate metal flange having side walls and a base wall joining the side walls to form a pocket for receiving a portion of the web. The machine has an elongated support table for supporting an assembled unit, comprising the flange with the web therein, for movement in the longitudinal direction of the unit. The machine has drive means on the table for moving the unit in the longitudinal direction. Forming means are on the table to form fasteners in the side walls of the flange while the side walls d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composite structural member does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composite structural member, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite structural member will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2957882

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.