Composite stone surfacing with improved optical and wear...

Stock material or miscellaneous articles – Three dimension imitation or 'treated' natural product

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S087000, C428S096000, C428S323000, C428S325000, C428S327000, C428S328000, C428S331000, C428S409000, C427S393600, C156S061000, C156S062200

Reexamination Certificate

active

06517915

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The invention relates to decorative composite stone surfacing materials composed of a binder and decorative hard aggregates; more particularly it relates to a composite stone material made using a decorative hard aggregate composed of pieces of quartz or other materials of equal or greater hardness that have been coated with materials affecting the light reflection within the pieces.
2. Background Art
Composite stone refers to materials composed of a binder and appropriate stone or synthetic aggregates that when mixed together form a semi-liquid or paste consistency that can be applied to a floor or other substrate, or placed in a mold to make either flat, two dimensional plates for use as tiles or sheets, or three dimensional objects such as statues or blocks. The mixture is then cured by an appropriate method to a hardened, unfinished state as in cross section
FIG. 1
, and then the surface is ground to reveal the decorative qualities below the rough surface, as in cross section FIG.
2
. Two dimensional tiles and sheets, and three dimensional objects, are widely produced in several areas of the world and are variously known as composite stone, agglomerated stone, manmade stone, polymer cement or terrazzo. The ratio of binder to aggregates commonly ranges from 5-50% binder to 50-95% aggregates, by volume.
The current technologies for producing composite or agglomerated stone utilize cements, epoxy, polyester, acrylic and other modern binders to hold the aggregates together in forming the composite stone. Methods of production range from simple mixing and molding to more advanced molding with vibration or molding using vacuum, vibration, and/or pressure techniques. Subsequently the binder is caused to harden by a method and time appropriate to the binder, and the resultant hardened composite stone can be further worked by grinding and polishing, to produce a visible surface with desired finish from rough ground to highly polished and glossy.
Whatever the method, the resulting composite stone has various looks and physical/chemical characteristics depending upon the choice of binder and aggregates. Various pigments, additives, fibers or other proprietary modifying components can be added to the mixture to achieve desired colors, manufacturing ability, cost reductions, or physical/chemical properties for the composite stone.
Terrazzo is an ancient form of composite stone, well known and widely utilized since Roman times. Originally most terrazzo was made from cement binder, marble and pigments. The mixture was spread on a substrate, hardened and ground. This method is still used today and is referred to as “poured-in-place” terrazzo. The mixture can be applied to floors, walls, columns, furniture, stairs etc and then ground and polished after hardening. Such mixtures have also been placed in molds to form tiles, slabs, and blocks—which can be subsequently sliced into slabs or tiles for polishing. Composite stone stairs, containers, tabletops, furniture, statues and the like and are common, and are referred to as pre-fabricated, pre-cast or pre-formed terrazzo items.
In this century the cement has often been replaced with plastic binders such as epoxy, polyester, urethane, acrylic or other resins in order to improve characteristics of the finished composite stone material or to aid in production, as either poured-in-place or for pre-cast composite stones. Prior to this century and the advent of electric grinding machinery and modem grinding abrasives, the grinding and polishing was done by hand labor and therefore most of the aggregates were relatively soft such as marble, sea shells or glass. With the advent of electric grinding equipment and modem grinding abrasives harder aggregates such as granite and quartz are being used in the production of composite stone, both poured-in-place and pre-cast.
Over the last 40 years, up to about 10 years ago, the production of pre-cast composite stone was done with soft aggregates, which enabled it to be cast in the form of large blocks and then sliced into slabs nominally 0.3 to 4.0 cm in thickness; or as slabs and tiles, again typically in thickness from 0.3 to 4.0 cm, and in dimensions ranging from 12×12 inches up to 6×15 feet or larger. It wasn't until recent improvements in diamond, cubic-borne nitride and silicon carbide and other grinding and polishing media that make calibrating, grinding, polishing and cutting of hard aggregates possible and cost effective.
The production and consumption of pre-cast tiles and slabs of composite stone, now about 100 million square feet per year, is a significant and growing part of the overall production of surfacings for floors, walls, exterior walls, counter tops, furniture, partitions and other architectural elements for the building construction industry. Producers of composite stones have devised various methods to provide improved or different appearances, and physical and chemical characteristics of these composite stones by using as the aggregate in the binder-aggregate mixture such materials as pieces of glass, mirror, plastic, and metal, in addition to the traditional aggregates of marble, granite, quartz, or other stones and minerals.
In general, composite stone can be divided into two groups—hard and soft. “Hard” composite stone contains aggregates and fillers such as quartz, granite, Aluminum Oxide or other minerals, natural or synthetic, with a Mohs hardness index (traditional, non-linear, scale of hardness where by definition talc=1, quartz=7 and diamond=10) of 6 or 7 and higher. “Soft” composite stones contain aggregates and fillers such as marble, glass, sea shells, plastic, metal with Mohs index typically less than 6 or 7. For context, consider that for marbles, glass, and the like, the Mohs index is usually in range of 3.0 to 5.5 or so.
The practical distinction is that in general, dirt and sand which comes into contact with such surfaces, whether the composite stone is used on the floor or on countertops, is composed largely of quartz, Mohs 7, that can easily scratch, abrade or destroy the surface of soft composite stones. Quartz is the most abundant mineral on the planet; and is a common component to dirt, dust, and grit in all parts of the world. Especially on walls and countertops and furniture having such decorative surfaces; abrasive agents used in many cleaning agents, knife edges, and other articles coming into contact with the surface, and of course the inevitable dirt, dust and grit, are sufficiently hard to scratch these Mohs 3-5 materials, causing accumulating damage and wear to such soft composite stone surfaces.
The following hard and soft composite stone materials are well known and commonly used in the industry, today. Their characteristics are described here giving the requisite usefulness from an aesthetic or durability point of view.
Group 1. Marble aggregates—soft composite stone—marble has a hardness of 3-4 on Mohs scale and therefore is easy to grind and polish but also is also easily scratched when used on a floor or other area subject to abrasion. Marble is also absorbent and therefore easily stained and also subject to attach by even mild acids. Until about 1990, marble was the principle aggregate used in nearly all decorative composite stone production.
Group 2. Marble aggregates with addition of pieces of glass, mirror, metal, mother of pearl plastic, constitutes a soft composite stone. The glass, mirror or plastic can be colorless or colored and from clear/transparent to cloudy
early opaque. The metal or mother of pearl or soft (less than 7 Mohs) semi-precious stones come in many colors. The percentage of the added non-marble aggregates can be from a few percent as random dots on the surface, up to constituting most or all of the required aggregate in the composite stones aggregate-binder mixture. Products where the binder is a cement or plastic resin and the aggregate is partly, substantially, or wholly made from glass or mirror powder, granules or c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composite stone surfacing with improved optical and wear... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composite stone surfacing with improved optical and wear..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite stone surfacing with improved optical and wear... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3176347

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.