Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Particulate matter
Reexamination Certificate
2000-07-27
2003-07-01
Le, H. Thi (Department: 1773)
Stock material or miscellaneous articles
Coated or structually defined flake, particle, cell, strand,...
Particulate matter
C428S404000, C428S426000, C428S432000, C428S433000, C428S434000, C428S448000, C428S450000, C428S469000, C428S470000, C428S471000, C428S472000
Reexamination Certificate
active
06586098
ABSTRACT:
BACKGROUND OF THE INVENTION
1. The Field of the Invention
The present invention relates generally to flake-based pigments. More specifically, the present invention relates to composite reflective flake based pigments having improved specular reflectance.
2. The Relevant Technology
Pigments are generally used to contribute to the optical and other properties of coatings, inks, extrusions, paints, finishes, glass, ceramics, cosmetics, and the like. Many varieties of pigments exist, some of which are metal flake based. These metal flakes comprise a thin film metal layer for improving the lustre, sparkle, shine, absorption, hiding and/or reflective properties of the application. The optical performance of the pigments, however, is duly constrained by the inherent limitations of each metal flake therein.
In general, it is known that for the application to achieve the greatest specular reflectance across visible wavelengths (about 300-800 nm), metal flakes should individually lay as flat as possible. As a collection of numerous flakes, the greatest reflectance, and hence greatest brightness, occurs when the flakes are collectively planar oriented to expose the greatest amount of surface area of the metallic flakes to the incident light and reflect as much of that light as possible.
A major factor, however, affecting those reflectance characteristics is the size or dimensions of the flake as the flake is used in a particular application. For example, if the flakes are thick, a plurality of thick flakes combined together in an application are prevented from lying together in a generally flat or horizontal singular plane because adjacent flakes cannot easily overlap each other due to their thickness. As a result, many flakes are adversely caused to be oriented in a substantially vertical manner and the plurality of flakes do not lay with their area surfaces parallel to a common plane. Incident light then exposed upon the non-planar pigments is subject to extreme scatter and non-specular reflection. Thus, the favorable reflective properties of the application are diminished by thick flakes. To a lesser extent, thick flakes frequently cause other difficulties such as the clogging of automatic-spray paint guns during painting applications.
It is also well known that as the thicknesses of the flakes is reduced, the point is reached where the flakes become so flimsy (i.e., non-rigid or flaccid) that they begin to curl and or wrinkle. This reduction in flake planarity increases the scatter of incident light and reduces the desirable specular reflectivity. Additionally, if the flakes are too thin when applied onto a surface during applicational use, the flakes will assume any microscopic defects in the contour of that surface. For example, if that contour is rough, the flakes will correspondingly be rough or non-planar. As the flakes are distorted to conform with the surface, planarity is reduced, again increasing the scatter of incident light and reducing the desirable specular reflectivity. Some manufacturing processes form flakes from a singular, larger sheet or film of metal which is “fractured” by well known techniques into smaller, flake-sized particles.
Two types of fracture may result, “ductile” or “brittle.” Ductile fractures cause the metal to undergo substantial plastic deformation near the vicinity of fracture before fracture occurs. This deformation causes numerous malformed regions having disfavorable planar characteristics to appear. As before, these malformed regions, such as regions having curled or wrinkled metal, disadvantageously tend to scatter and diffuse incident light exposed thereupon. Brittle fractures, on the other hand, tend to cause little or no plastic deformation of the metal before the fracture occurs which enables the produced metal flake to maintain, as much as possible, the original planarity of the larger metal sheet. Consequently, it is desirable that brittle fracture occur during manufacturing. However, brittle fracture does not occur with most metals having high reflectivity.
In fact, brittle fracture is only likely to occur with materials having a large compressive strength as compared to its corresponding tensile strength. This is because the internal bond strength distributed throughout a material is composed of tensile and compressive components. The tensile strength compensates for forces out of the plane of the material and the compressive strength is related to forces in the plane. Thus, similar compressive and tensile strengths will allow ductile deformations since the relative strength into and out of the plane is equivalent. In contrast, brittle deformation occurs when the compressive strength is greater than the tensile strength and the material strength is directed into the plane, not out of the plane. Consequently, a high compressive strength relative to tensile strength results in bond rupture and material cracking when a force is applied. Thus, aluminum, for example, which has a tensile strength of about 13-24 lb/in
2
and a compressive strength of about 13-24 lb/in, would most likely undergo a ductile fracture under a uniaxial stress which would cause the aluminum to exhibit disfavored reflective characteristics. Moreover, once the aluminum is bent or deformed, as would occur with ductile fracture, the aluminum remains deformed and the disfavored reflective characteristics would persist. Consequently, it is difficult to manufacture metal flakes, such as aluminum, without malformations that reduce reflectance.
As is well known, fracture mechanics are not only important for metal flakes during the manufacturing process, but are as equally important during use. For example, applicational processes, such as the drying of a paint or ink solvent, also induce stresses on the flake. These stresses, caused by surface tension, again cause the flake to undergo fracture or malformation. Since brittle fracture of the flake during the applicational process also tends to produce smaller flakes that maintain much of the original planarity of the larger flake, instead of curled or deformed flakes, flake planarity and reflective properties are improved. Thus, flake brittleness is a characteristic not only preferred during the manufacturing process but also preferred during the applicational use.
Prior techniques have attempted to produce thin, rigid and brittle flakes by facilitating both the manufacturing thereof and the reflective properties of the application. Yet all prior solutions have involved compromises. For example, in U.S. Pat. No. 5,198,042, it is taught to alloy the metal flake with other materials and metals to reduce the adverse curling, wrinkling and malleability of thin flakes. Alloying, however, dilutes the reflectance properties of the flake. In U.S. Pat. No. 4,213,886, a surface bound species that pulls the flake flat in a coating resin is disclosed. This method, however, requires chemical tailoring of the flake and the resin in order achieve chemical compatibility with the species. Such compatibility is difficult and has not proved to be practical.
In U.S. Pat. No. 4,629,512, flakes are floated on a resin coating. Adversely, this method submits the flake to durability attacks because the flake is unprotected. Such attacks primarily include corrosion which not only corrodes the flake but tends to give the application a mottled or discolored appearance. Additionally, if this method were used in conjunction with another resinous application, such as a clear overcoat paint, the overcoat itself would tend to disfavorably disrupt the planar orientation of the flake because of solvent penetration. Again, reflectance properties would be decreased.
In U.S. Pat. No. 5,593,773, pre-cracked flakes are disclosed having such a small aspect ratio that malformation of the flake is essentially impossible. A shrinking aspect ratio, however, also correspondingly shrinks the inherent reflectance capability of the flake. This is because, as the aspect ratio becomes smaller, there is more opportunity for flakes to become disoriented with respect to flakes
Coulter Kent E.
Matteucci John S.
Mayer Thomas
Phillips Roger W.
Flex Products, Inc.
Le H. Thi
Workman & Nydegger & Seeley
LandOfFree
Composite reflective flake based pigments comprising... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Composite reflective flake based pigments comprising..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite reflective flake based pigments comprising... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3056679