Composite proppant, composite filtration media and methods...

Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Particulate matter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S403000, C428S404000, C428S406000, C428S407000, C427S214000, C427S221000, C427S379000, C523S130000, C523S131000, C523S132000, C523S139000, C523S145000, C523S205000, C166S295000

Reexamination Certificate

active

06632527

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to composite media to be used in filtration and composite proppant to be used in petroleum and gas production to “support/prop” a hydraulic fracture in the vicinity of a wellbore. The proppant keeps the hydraulic fracture open for the inflow of petroleum and/or natural gas, and can substantially improve the yield per well. More particularly, the invention relates to a particle suitable as composite proppants, composite filtration media and composite media for cushioning artificial turf for a sports field. The particles are built from suitable fillers bonded together with organic and/or inorganic tri-dimensional crosslinkers/binders. The invention also relates to methods for making and using these filtration media, proppants and cushioning media.
2. Description of Background Art
In general, proppants are extremely useful to keep open fractures imposed by hydraulic fracturing upon a subterranean formation, e.g., an oil or gas bearing strata. Typically, the fracturing is desired in the subterranean formation to increase oil or gas production. Fracturing is caused by injecting a viscous fracturing fluid or a foam at high pressure into the well to form fractures. As the fracture is formed, a particulate material, referred to as a “propping agent” or “proppant” is placed in the formation to maintain the fracture in a propped condition when the injection pressure is released. As the fracture forms, the proppants are carried into the well by suspending them in additional fluid or foam to fill the fracture with a slurry of proppant in the fluid or foam. Upon release of the pressure, the proppants form a pack which serves to hold open the fractures. The goal of using proppants is to increase production of oil and/or gas by providing a highly conductive channel in the formation. Choosing a proppant is critical to the success of well stimulation.
The propped fracture thus provides a highly conductive channel in the formation. The degree of stimulation afforded by the hydraulic fracture treatment is largely dependent upon formation parameters, the fracture's permeability and the fracture's propped width. If the proppant is an uncoated substrate, e.g., sand, and is subjected to high stresses existing in a gas/oil well, the substrate may be crushed to produce fines of crushed proppant. Fines will subsequently reduce conductivity within the proppant pack. However, a resin coating will enhance crush resistance of a coated particle above that of the substrate alone.
Glass beads had been used as propping materials (see U.S. Pat. No. 4,068,718, incorporated herein by reference for the state of the technology). Their disadvantages include the costs of energy and production, as before, and their severe drop in permeability at elevated pressures (above about 35 MPa) because of their excessive crushing at downhole conditions. Thus, it is not currently favored.
Three different types of propping materials, i.e., proppants, are currently employed.
The first type of proppant is a sintered ceramic granulation/particle, usually aluminum oxide, silica, or bauxite, often with clay-like binders or with incorporated hard substances such as silicon carbide (e.g., U.S. Pat. No. 4,977,116 to Rumpf et al, incorporated herein by reference, EP Patents 0 087 852, 0 102 761, or 0 207 668). The ceramic particles have the disadvantage that the sintering must be done at high temperatures, resulting in high energy costs. In addition, expensive raw materials are used. They have relatively high bulk density, and often have properties similar to those of corundum grinding materials, which cause high wear in the pumps and lines used to introduce them into the drill hole.
The second type of proppant is made up of a large group of known propping materials from natural, relatively coarse, sands, the particles of which are roughly spherical, such that they can allow significant flow (English “frac sand”) (see U.S. Pat. No. 5,188,175 for the state of the technology).
The third type of proppant includes samples of type one and two that may be coated with a layer of synthetic resin (U.S. Pat. No. 5,420,174 to Deprawshad et al; U.S. Pat. No. 5,218,038 to Johnson et al and U.S. Pat. No. 5,639,806 to Johnson et al (the disclosures of U.S. Pat. Nos. 5,420,174, 5,218,038 and 5,639,806, incorporated herein by reference); EP Patent No. 0 542 397).
Known resins used in resin coated proppants include epoxy, furan, phenolic resins and combinations of these resins. The resins are from about 1 to about 8 percent by weight of the total coated particle. The particulate substrate for resin coated proppants may be sand, ceramics, or other particulate substrate and typically has a particle size in the range of USA Standard Testing screen numbers from about 8 to about 100 (i.e. screen openings of about 0.0937 inch to about 0.0059 inch).
Resin coated proppants come in two types: precured and curable. Precured resin coated proppants comprise a substrate coated with a resin which has been significantly crosslinked. The resin coating of the precured proppants provides crush resistance to the substrate. Since the resin coating is already cured before it is introduced into the well, even under high pressure and temperature conditions, the proppant does not agglomerate. Such precured resin coated proppants are typically held in the well by the stress surrounding them. In some hydraulic fracturing circumstances, the precured proppants in the well would flow back from the fracture, especially during clean up or production in oil and gas wells. Some of the proppant can be transported out of the fractured zones and into the well bore by fluids produced from the well. This transportation is known as flow back.
Flowing back of proppant from the fracture is undesirable and has been controlled to an extent in some instances by the use of a proppant coated with a curable resin which will consolidate and cure underground. Phenolic resin coated proppants have been commercially available for some time and used for this purpose. Thus, resin-coated curable proppants may be employed to “cap” the fractures to prevent such flow back. The resin coating of the curable proppants is not significantly crosslinked or cured before injection into the oil or gas well. Rather, the coating is designed to crosslink under the stress and temperature conditions existing in the well formation. This causes the proppant particles to bond together forming a 3-dimensional matrix and preventing proppant flow back.
These curable phenolic resin coated proppants work best in environments where temperatures are sufficiently high to consolidate and cure the phenolic resins. However. conditions of geological formations vary greatly. In some gas/oil wells, high temperature (>180° F.) and high pressure (>6,000 psi) are present downhole. Under these conditions, most curable proppants can be effectively cured. Moreover, proppants used in these wells need to be thermally and physically stable, i.e., do not crush appreciably at these temperatures and pressures.
Curable resins include (i) resins which are cured entirely in the subterranean formation and (ii) resins which are partially cured prior to injection into the subterranean formation with the remainder of curing occurring in the subterranean formation.
Many shallow wells often have downhole temperatures less than 130° F., or even less than 100° F. Conventional curable proppants will not cure properly at these temperatures. Sometimes, an activator can be used to facilitate curing at low temperatures. Another method is to catalyze proppant curing at low temperatures using an acid catalyst in an overflush technique. Systems of this type of curable proppant have been disclosed in U.S. Pat. No. 4,785,884 to Armbruster and the disclosure of this patent is incorporated by reference in its entirety. In the overflush method, after the curable proppant is placed in the fracture, an acidic catalyst system is pumped through the proppant pack and initiates the cur

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composite proppant, composite filtration media and methods... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composite proppant, composite filtration media and methods..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite proppant, composite filtration media and methods... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3158651

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.