Composite piston for reciprocating machine

Expansible chamber devices – Piston – Open-ended hollow skirt type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C092S224000

Reexamination Certificate

active

06240827

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a piston for a machine such as an internal combustion engine and to a method for manufacturing such a piston.
The piston in a reciprocating machine is obviously a very critical part of the mechanism. This is particularly true with internal combustion engines in as much as the piston is the part of the engine that receives the explosive force from the combustion and transmits it through the connecting rod to a crankshaft for providing an output force. The various parts of the piston have specific functions in order to achieve this result.
The head of the piston must be able to withstand the compressive force and temperature of combustion. Also the area adjacent the upper surface of the head forms a ring groove area where the piston rings are supported. These provide a sealing function with the cylinder bore so as to confine the combustion products.
The piston is also provided with pin bosses that receive the piston pin and which transmit the force from the piston to the connecting rod through the piston pin. Obviously, there are high forced transmissions in this area. Furthermore there are considerable frictional forces and loads between the piston and piston pin.
In addition, the piston as a skirt portion that rubs against the cylinder bore and which assists in maintaining the piston in an upright condition within the cylinder bore. In addition, the side thrusts on the piston are taken by the skirt and thus it is also subjected to forces and must have high abrasion resistance due to its rubbing action with the cylinder bore.
Thus, it should be apparent that the different parts of the piston have different functions that require optimally different materials. Of course, it is possible to form the entire piston from the same material but this can give rise to high costs and also high weights. It is important to reduce the weight of the piston so as to reduce the inertial loading on the engine and provide high power outputs and high engine crankshafts speeds. Also, the lighter the weight the lighter the balancing masses in the engine can be in order to reduce vibrations.
Some of these functions can be achieved by changing the dimensions of the piston either alone or in combustion with changing the materials. For example, the sealing function can be improved if the piston ring area is made greater and a greater number or greater size of piston rings are employed. However, this causes emission problems in that the area around the piston rings may retain combustion products and can cause some emission concerns.
Thus, there has been proposed the formation of pistons with different materials, each serving its intended purpose for the particular part of the piston in which it is positioned. However, this is quite a difficulty in adhering or connecting these different materials to each other to provide a unitary structure. Some more methods of connections can be employ brazing or welding. However, when applied with these additional heats in order to connect the materials together, then deterioration in the properties of the associated and affected materials can result thus defeating the main purpose of the composite construction.
It has also been proposed to improve the strength of the piston in certain areas by casting in inserts in the areas where stresses is highest. For example, it has been proposed to cast in inserts in the area of the piston pin bosses so as to increase their strength without adding significantly to the overall weight of the piston. However, this also has some of the same problems aforenoted in connection with using dissimilar materials. Furthermore, the casting process becomes somewhat complicated and thus this method does not totally solve the problem.
Forging is another technique by which composite materials may be used. Some methods have been proposed, but they have not been totally successful in achieving the desired bonding strength. Therefore we have proposed a method and construction that employs a combination of powdered metal technology and forging bonding that can produce excellent results. This is disclosed in the co-pending application of certain of the applicants hereof entitled “Piston For Internal Combustion Engine And Process Of Making Same”, Ser. No. 08/859,536, Filed May 20, 1997 and assigned to the assignee hereof.
The materials utilized also are important not only to achieve the desired properties, but also the proper bond. Basically, pistons for engines are generally formed from aluminum or aluminum alloy materials. The aluminum has the advantage of light weight and relatively high strength. However, the use of alloy materials has been resorted to so as to improve certain characteristics.
For example, silicon (Si) in an alloy with the aluminum to increase abrasion resistance and resistance to hardening under temperature. Copper (Cu) and Magnesium (Mg) have also been employed for increasing strength. At times, however, these alloying elements can present some problems in that their inclusion in a casting process can cause difference in particle sizes to result which can offset some of the benefits of the alloying.
It has also proposed, therefore, a method of forming a piston material by a form of sintering process which then permits the forging of a piston to obtain the desired characteristics. Such an arrangement is disclosed in the co-pending application of certain of the inventors hereof entitled “Piston For Internal Combustion Engine And Material Therefore”, Ser. No. 09/022,647, filed Feb. 12, 1998, and also assigned to the assignee hereof.
In accordance with the features hereof these materials are combined with lower costs materials to form a composite piston that will provide the performance desired along with lightweight and lower costs.
It is, therefore, a principal object to this invention to provide an improved piston construction for an internal combustion engine.
It is a further object to this invention to provide an improved, lightweight, high strength and high abrasion resistant, composite piston for a reciprocating machine.
It is a further object to this invention to provide an improved low cost piston having the desired material requirements in the various areas of the piston.
It is a further object to this invention to provide an improved method for manufacturing a composite piston of the aforenoted type.
SUMMARY OF THE INVENTION
This invention is adapted to be embodied in a composite piston for a reciprocating machine comprised of a pair of dissimilar materials bonded together by a forging process. A first of the materials has a property having characteristics selected from the group of strength and abrasion resistance that is substantially greater than the other. The piston is comprised of a head portion having an upper surface adapted to experience pressure and a peripheral ring groove portion for receiving at least one sealing ring below the upper surface. A skirt portion comprised of at least a pair of surfaces for sliding engagement with a cylinder bore formed below said head portion. A pair of piston pin bosses having piston pin receiving openings for connection to a connecting rod small end by a piston pin is disposed below the ring groove. The piston pin bosses are formed between circumferentially spaced portions of the skirt portion surfaces. The one material forms at least a portion of the piston pin bosses in the area where engaged by the piston pin.


REFERENCES:
patent: 1508861 (1924-09-01), Taub
patent: 2707136 (1955-04-01), Fahlman
patent: 2713526 (1955-07-01), Zollner
patent: 2771327 (1956-11-01), Reinberger
patent: 2956846 (1960-10-01), McCullough
patent: 4068645 (1978-01-01), Jenkinson
patent: 4077810 (1978-03-01), Ohuchi et al.
patent: 4334507 (1982-06-01), Kohnert et al.
patent: 4434014 (1984-02-01), Smith
patent: 5303764 (1994-04-01), Sasaki et al.
patent: 5409661 (1995-04-01), Imahashi et al.
patent: 5992015 (1999-11-01), Kurita et al.
patent: 449 719 (1971-01-01), None
patent: 695708 (1940-08-01), None
patent: 3719121 A1 (1988-12-01), None
patent: 3

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composite piston for reciprocating machine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composite piston for reciprocating machine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite piston for reciprocating machine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2507833

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.