Composite piston for a vibration pump

Pumps – Motor driven – Electric or magnetic motor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C417S416000, C417S418000, C092S222000

Reexamination Certificate

active

06554588

ABSTRACT:

The present invention relates to a composite piston for vibration pumps comprising a driving part made of ferromagnetic material and a pumping part made of plastic and obtained by means of moulding on a metal insert forming the driving part thereof.
Vibration pumps are fundamental components which are very widespread in many applications and in different sectors. In particular these pumps are widely used for feeding boilers of electric household appliances and especially machines for preparing hot drinks by means of infusion with powders containing the ingredients necessary for preparation thereof, such as machines for the preparation of espresso coffee and similar drinks. The growing use of these vibration pumps is accompanied by the need total reliability to be obtained at an increasingly lower cost.
Initial efforts to limit the price of these pumps were directed towards the choice of materials forming the structure of the pumping body and the electromagnetic apparatus and optimisation of their form and size so as to obtain increasingly reliable and economical parts. By way a secondary effort, research aimed at obtaining a greater degree of automation of the production plants also helped reduce the production costs.
At this point, in order to reduce further the production costs, it was necessary to modify certain components which normally are never taken into consideration because they are “apparently” already simple, but which nevertheless may still be the source of defects in the end product, albeit to a very small extent.
One of these components is the piston pump, which hitherto has been made entirely of metallic material by means of mechanical machining.
Hitherto, for the sake of simplicity, it was considered to be particularly economical and logical to construct the piston of a vibration pump as a single metal part.
However, when analysing the methods used for manufacture of an entirely metal piston and the requirements which this piston must satisfy, several facts which apparently had not come to light now emerged:
1. In a traditional vibration pump the piston is immersed in the liquid to be pumped, hence the need for a high magnetic efficiency and high corrosion resistance. Unfortunately these two characteristics are directly opposed since metallic materials, which have an excellent corrosion resistance, are devoid of ferromagnetic properties, while, on the other hand, materials which have excellent ferromagnetic properties and hence a high magnetic efficiency, have a low corrosion resistance. In short, it has been necessary to adopt compromise solutions which, however, are heavily biased either towards a high corrosion resistance, with poor ferromagnetic properties, or towards good ferromagnetic properties, with a low corrosion resistance. Recent research has indeed produced particular materials which provide an excellent balance, ensuring a high corrosion resistance and good ferromagnetic properties, even though this material has been unable to eliminate the occurrence of problems which, in this case, are of a mechanical nature.
2. As an alternative to the mechanical piston immersed in the pumped liquid, it was thought to provide pumps, in which the electromagnetic portion is separate from the pumping portion. However, such a solution implies the need to construct coils containing a large quantity of copper wire, the cost of which is extremely high or, alternatively, to construct pumps with an inferior performance, in particular at high working pressures, which may not always be satisfactory.
3. The traditional vibration pump comprises a piston which must perform various functions:
it has to convert the force, due to the magnetic field of the coil, into movement;
it must provide a hydraulic seal, during the stroke, with the cylinder of the pump body;
it must ensure the dynamic seal of the intake valve; and
it must allow the outflow of liquid into the chamber preceding the pressure chamber.
In order to perform correctly all these functions, the piston must be manufactured to an industrially acceptable standard with very small tolerances in terms of finish, size and geometrical shape. The dimensional tolerances are therefore extremely important and negatively influence the production cost, in the sense that large tolerances result in a higher number of reject components which are not up to standard and smaller tolerances are possible only at the cost of further machining operations which increase the production costs. However, the parts thus manufactured are unable to guarantee fully the overall quality because the critical points are obtained by means of removal of shavings on automatic machine tools which are required to produce millions of parts per year. In this case, any machining imprecision or the presence of burrs or imperfect finishes make it difficult to guarantee 100% quality which can be obtained only by means of costly and rigorous verification procedures during the pre-assembly stage.
In the prior art EP-A-0 288 216 discloses and claims an electrical fluid pump using a wide part, consisting of a ferromagnetic piece working as portion of the pump moved by the magnetic field of a solenoid coil, and a restricted part, consisting of nonmagnetic material (such as plastic or a non magnetic metal), working as a pump piston and inserted into a central bore of the wide part and there fastened by crimping-in of a lip provided at an end of the wide part.
One object of the present invention is that of producing these pistons in a direct and low-cost manner using a simple direct machining process which excludes finishing operations for parts which have already been machined
The above mentioned objects are achieved by a piston according to the present invention comprising a part which is made of ferromagnetic metallic material, limited in extension to the piston zone intended to perform the magnetic driving function, and a part which is made of non-metallic and non-ferromagnetic material and performs the pumping function of the same piston, the metal part performing the magnetic moving function being made of stainless steel possessing good ferromagnetic properties, characterized in that: the part performing the pumping function is made of a plastic material moulded on the metal part and inserted with a part thereof, consisting of a cylindrical blank, in an axial bore.
Apparently in the prior art the use of materials other than metal was discouraged because the mechanical action of a radial seal at high working pressures caused significant wear also in the case of stainless steel, so that the logical doubt arose that any plastic material would have been subject to even greater wear and, in addition, the mechanical assembly of the metal magnetic driving part with the plastic part, as disclosed in EP-A-0 288 216, apparently required costly systems to correct any clearance and ensure the precision and necessary quality control.
However, it was discovered that, if the temperature of the water to be pumped were to remain close to room temperature (15 to 25° C.), with maximum temperatures of the piston remaining between 50 and 60° C., there would be no particular difficulty in using thermoplastic materials, possibly containing a reinforcing filler, such as, for example polyamides (nylon) reinforced with glass fibres, ground quartz, fumed silica, diatomaceous earth or the like, the piston being obtained by means of moulding of the thermoplastic material onto a stainless-steel insert of the ferromagnetic type. A practical example of a suitable low-cost and commercially freely available thermoplastic material could be nylon 6.6 containing 30% glass fibres.
Obviously, owing to a certain tendency of nylon 6.6 to absorb—albeit in small quantities—water, this would limit the life of the piston, although to time periods of a duration such as to render obsolete the device in which a vibration pump containing said piston was installed.
Moreover, if there was an absolute need for total reliability of the pump to be obtained using thermoplastic materials which are not subject to the d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composite piston for a vibration pump does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composite piston for a vibration pump, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite piston for a vibration pump will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3008531

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.