Composite nickel fine powder

Compositions – Electrically conductive or emissive compositions – Free metal containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S518100, C428S403000, C361S305000, C361S306300

Reexamination Certificate

active

06312622

ABSTRACT:

BACKGROUND OF THE INVENTION
(a) Field of the Invention
The present invention relates to composite nickel fine powder in which an oxide and/or a double oxide of a metal element are attached to the surface of metal nickel fine particles and a fatty acid is further supported on the surface of the nickel fine particles provided thereon with the oxide and/or double oxide attached thereto. More specifically, the present invention pertains to composite nickel fine powder, which is excellent in resistance to heat shrinkage, which has a high tap density, which permits the formation of a printed wiring having a high density after the powder is formed into a paste and then dried, which permits the formation of an electrode having a high density after firing and which has characteristic properties suitable for use as a material for forming a conductive paste and in particular as an internal electrode material for multilayer ceramic capacitors.
(b) Description of the Prior Art
The multilayer ceramic capacitor is in general produced by alternately putting ceramic dielectric materials and internal electrodes in layers, followed by pressing them to each other and firing the resulting assembly to thus integrate the foregoing elements. The internal electrode for such a multilayer ceramic capacitor is in general produced by forming metal fine powder as an internal electrode material into a paste, printing the paste on a ceramic substrate, putting a plurality of the printed substrates in layers, integrating them by pressing with heating and then heating and firing the resulting assembly in a reducing atmosphere. As such internal electrode materials, there have conventionally been used, for instance, palladium and platinum. However, there have recently been developed various techniques, which make use of base metals such as nickel in place of noble metals such as platinum and palladium and a great advance has been made in such techniques.
If metal nickel powder is used as the internal electrode material, however, it has a tendency of undergoing rapid heat-shrinkage at a temperature around 700° C., although this tendency depends on the particle size of the nickel powder.
On the other hand, the firing temperature used when producing a multilayer ceramic capacitor may vary depending on the compounds constituting a ceramic dielectric material and when using, for instance, a ceramic dielectric material consisting of a perovskite-type double oxide such as BaTiO
3
or SrTiO
3
, it is required to use a firing temperature of not less than 1200° C. The nickel fine powder used for forming an electrode undergoes heat-shrinkage severer than those observed for dielectric materials at such a high temperature. For this reason, the multilayer ceramic capacitor undergo delamination, crack-formation and/or warpage due to the heat-strain generated between the laminated dielectric layer and nickel layer and this in turn results in the deterioration of the quality of the multilayer ceramic capacitor.
As a means for eliminating this drawback, it would be regarded, as important, that the temperature at which any rapid heat-shrinkage is initiated is shifted toward the higher temperature side to thus approach the heat-shrinkage curve of nickel fine powder for forming a paste used in the production of a multilayer ceramic capacitor to the heat shrinkage curve of the ceramic base material. To this end, there has been proposed a technique for applying a metal oxide or a double oxide onto the surface of individual nickel fine particles.
However, such a technique for applying a metal oxide or a double oxide onto the surface of nickel fine particles suffers from such a problem that the surface area of individual fine particles increases and that the tap density thereof is reduced. Accordingly, it would be quite difficult to achieve a printed wiring having a desired high density when forming a conductive paste and then drying the same.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide composite nickel fine powder, which is excellent in resistance to heat shrinkage, which has a high tap density, which permits the formation of a printed wiring having a high density after the powder is formed into a paste and then dried, which permits the formation of an electrode having a high density after firing and which has characteristic properties suitable for use as a material for forming a conductive paste and in particular as an internal electrode material for multilayer ceramic capacitors.
The inventors of this invention have conducted various studies to achieve the foregoing object, have found that composite nickel fine powder having the foregoing characteristic properties can efficiently be produced by attaching a specific oxide and/or a specific double oxide of a metal element to the surface of metal nickel fine particles and further applying a fatty acid on the surface of the nickel fine particles provided thereon with the oxide and/or double oxide attached thereto and thus have completed the present invention based on the foregoing finding.
According to the present invention, there is thus provided composite nickel fine powder which comprises metal nickel fine particles, at least one member attached to the surface of the nickel fine particles and selected from the group consisting of oxides and double oxides containing at least one metal element selected from the group consisting of the Groups 2 to 14 of the Periodic Table and whose atomic number falls within the range of from 12 to 82, and a saturated or unsaturated fatty acid supported on the surface of the nickel fine particles provided thereon with the oxide and/or double oxide attached thereto.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The metal nickel fine particles constituting the composite nickel fine powder of the present invention can be prepared by either a dry method, which comprises vapor phase hydrogen reduction of nickel salt vapor, or a wet method, which comprises reducing an aqueous solution containing a nickel salt with a reducing agent under specific conditions to thus precipitate nickel fine particles.
The metal nickel fine particles constituting the composite nickel fine powder of the present invention are in general fine particles of elemental nickel, but the surface of the elemental nickel may be oxidized.
The particle size of the metal nickel fine particles is in general not more than 5 &mgr;m and preferably not more than 1 &mgr;m when using the composite nickel fine powder in the form of a paste for forming an internal electrode of a multilayer ceramic capacitor. More preferably, the particle size of the composite particles comprising metal nickel fine particles and the oxide and/or double oxides attached to the surface of the former is not more than 1 &mgr;m.
The oxide and double oxide constituting the composite nickel fine powder of the present invention is at least one member selected from the group consisting of oxides and double oxides containing at least one metal element selected from the group consisting of the Groups 2 to 14 of the Periodic Table and whose atomic number falls within the range of from 12 to 82. The composite nickel fine powder of the present invention is, for instance, used as a material for forming a conductive paste, in particular, as a material for the internal electrode of a multilayer ceramic capacitor. In such case, the oxides and double oxides are preferably those containing at least one metal element selected from the group consisting of the Groups 2 to 4, 7, 13 and 14 and whose atomic number falls within the range of from 12 to 82. More preferably used herein are, for instance, oxides and double oxides containing at least one member selected from the group consisting of magnesium, calcium, barium, yttrium, lanthanoid elements, zirconium, manganese, aluminum and silicon.
Moreover, the double oxide constituting the composite nickel fine powder of the present invention is preferably at least one member selected from the group consisting of double oxides represented by the following genera

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composite nickel fine powder does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composite nickel fine powder, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite nickel fine powder will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2576582

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.