Composite material having sliding property

Stock material or miscellaneous articles – Composite – Of fluorinated addition polymer from unsaturated monomers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S422000, C428S426000, C428S457000

Reexamination Certificate

active

06677044

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a composite material having sliding property which is produced by applying, to a substrate, a fluorine-containing polymer excellent in sliding property, non-sticking property, heat resistance, transparency (property for exhibiting clear surface pattern), water- and oil-repellency and particularly adhesive property to the substrate and utilizes particularly sliding property thereof.
BACKGROUND ART
Hitherto with respect to a heating surface of, for example, an iron in the field of domestic appliances, not only excellent heat resistance but also excellent sliding properties such as friction resistance and abrasion resistance have been demanded since it is used while being pressed onto clothes and slid thereon. Namely a material being excellent in sliding properties is required to be applied to such a portion.
As a material having sliding properties, generally there are engineering plastics such as polyacetal and PPS, silicon material and fluorine-containing material, particularly a fluorine-containing resin which are common materials and have been used practically.
However, there is a substantial problem that the fluorine-containing resin is insufficient in adhesion to a substrate of metal or glass due to its excellent non-sticking property.
Therefore in case where the fluorine-containing polymer is used in the form of a coating, there is a method of adhering a fluorine-containing resin to a substrate by roughening the surface of metal chemically or physically with expecting anchor effect between them. However this method requires much labor in the surface roughening itself, and though initial adhesion is possible, lowering of the anchor effect arises when a temperature change is made repeatedly and in case of use at high temperature.
Also a method for chemically activating a surface of a fluorine-containing resin by treating the surface with a solution prepared by dissolving metallic sodium in liquid ammonia has been proposed. However in that method, not only there is a fear that the solution itself causes environmental pollution but also there is a problem that its handling is attended with danger.
Further though a method for carrying out physical and chemical treatment such as plasma sputtering on a surface of a fluorine-containing resin has been proposed for activation of the resin surface, there is a problem that much labor is required for the treatment and an increase in cost is resulted.
Also in order to improve adhesion of a fluorine-containing resin coating, investigations with respect to addition of various components and formation of a primer layer have been made.
For example, there is a technique of adding an inorganic acid such as chromic acid to a coating composition containing a fluorine-containing polymer to form chemical conversion coating film on a surface of metal for enhancing adhesion of the composition (JP-B-63-2675). However since chromic acid contains hexahydric chromium, it cannot be said that such a technique is sufficient in view of safety in food and coating work. Further in case of use of other inorganic acids such as phosphoric acid, there was a problem that safety of a fluorine-containing resin coating composition is damaged.
Use of a coating composition containing a fluorine-containing resin as a primer, in which heat resistant resins such as polyamide imide, polyimide, polyethersulfone and polyether ether ketone and in addition, a metal powder are added instead of the above-mentioned inorganic acid, has been studied (JP-A-6-264000). Inherently there is almost no compatibility between a fluorine-containing polymer and a heat resistant resin. Therefore there arises a phase separation in a coating film, thus easily causing intercoat adhesion failure between the primer and the top coat of the fluorine-containing resin. Further film defects such as pin holes and cracks arise easily at the time of processing at high temperature or during use due to a difference in heat shrinkage between the fluorine-containing resin and the heat resistant resin or due to lowering of elongation of the coating film by the addition of the heat resistant resin. Also since those heat resistant resins are colored brown by baking, property for exhibiting clear surface pattern is poor and it is difficult to use them for applications requiring white and vivid colors and transparency. Further when the heat resistant resin is blended, non-sticking property and friction resistance which the fluorine-containing polymer inherently possesses are lowered.
Also for adhesion of a fluorine-containing resin coating composition to a glass, etc. requiring transparency, an improvement of the adhesion has been tried by treating the substrate with a silane coupling agent or adding a silicone resin to the fluorine-containing resin coating composition (JP-B-54-42366, JP-A-5-177768). However enhancement of adhesion is insufficient, heat resistance is lowered and separation of a coating film, foaming and coloring arise easily at sintering or in use at high temperature.
On the contrary, fluorine-containing resin coating compositions prepared by copolymerizing a hydrocarbon monomer (containing no fluorine) containing functional group such as hydroxyl or carboxyl have been discussed. However since those coating compositions were originally studied mainly for a purpose of weather resistance, sliding properties (particularly friction resistance) directed by the present invention are insufficient and it is difficult to use them for application requiring heat resistance (for example, 200° to 350° C.).
Namely with respect to a polymer prepared by copolymerizing a hydrocarbon monomer (containing no fluorine) having functional group, thermal decomposition easily occurs on components of the monomer at the time of processing at high temperature or during use, and thus coating film failure, coloring, foaming, separation, etc. arise, which makes it impossible to attain purposes of coating a fluorine-containing resin.
Further fluorine-containing polymers are generally insufficient in mechanical strength and dimensional stability, and high in price. In order to minimize those disadvantages and make the best use of the above-mentioned merits which the fluorine-containing polymer possesses inherently, investigations have been made also with respect to its use in the form of film.
However the fluorine-containing polymer inherently has low adhesive force, and it is difficult to adhere the fluorine-containing polymer in the form of film directly to other material (substrate). For example, even if the adhering is tried by thermo-processing, adhesive strength of the fluorine-containing polymer is not enough, or even if the polymer has adhesive force to a certain extent, such an adhesive force is apt to vary depending on kind of the substrate. Thus in many cases, reliability on the adhesive strength of the fluorine-containing polymer has been not so enough.
In order to adhere the fluorine-containing polymer film to a substrate, mainly the following methods have been studied:
1. a method for physically roughening a surface of substrate by sand blasting, etc.,
2. a method for surface-treating a fluorine-containing resin film by chemical treatment such as sodium etching, plasma treatment, photochemical treatment, etc.,
3. a method for adhering by using an adhesive, and other methods. With respect to the methods 1 and 2 above, other steps are required, and the steps are complicated and productivity is poor. Also kinds and shapes of substrates are restricted. Further the obtained adhesive force is insufficient, and also there easily occur a problem with appearance (property for exhibiting clear surface pattern) of the obtained composite materials such as coloring and color. Also the method of using a chemical such as sodium etching has a problem with safety.
Use of an adhesive in the method 3 above has also been discussed. A usual hydrocarbon type (containing no fluorine) adhesive does not have enough adhesive property and its heat resistance is insufficient. Thus a hydrocarbon

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composite material having sliding property does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composite material having sliding property, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite material having sliding property will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3195296

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.