Composite material and process for manufacturing same

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reissue Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S791000, C523S216000

Reissue Patent

active

RE037385

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to composite material with high mechanical strength and excellent high-temperature characteristics. More particularly, it relates to composite material comprising a polymer matrix containing polyamide and layers of a silicate that constitute a clay mineral, said polymer matrix and layers of a silicate being bonded together and uniformly dispersed.
2. Description of the Prior Art
It has been widely attempted to admix inorganic materials, such as calcium carbonate and clay minerals (e.g. mica), to organic polymer materials in order to improve the mechanical properties of the latter. Admixture of these inorganic additives to a polymeric material, however, brings about many disadvantages, such as embrittlement of the polymer, because of the extremely weak interaction between additive and matrix polymer. The amount of inorganic materials that can be admixed is also very limited. Techniques are known in which these inorganic materials are previously treated with a silane coupling agent or the like to ensure higher affinity to matrix polymer. In this case, however, the organic and inorganic materials are present in separate phases and uniform dispersion of the latter cannot be expected. The result is insufficient reinforcing effect and limited improvement in high-temperature characteristics.
In order to overcome these problems, we formerly filed “Resinous Composition Containing Polyamide” (Japanese Laid-Open Patent Publication No. 83551/1982), which comprises a polymer matrix containing polyamide and flakes of vermiculite with an aspect ratio not smaller than 5 dispersed in said polyamide. This was intended to improve the mechanical strength of organic polymer materials by addition of vermiculite flakes with a large aspect ratio (length/thickness ratio of a particle). The resinous compositions obtained by this method show improved mechanical strength compared with conventional resins, but the difficulties are that sufficiently large aspect ratios cannot be achieved because mechanical crushing is indispensable to obtain flakes of vermiculite, and that a large amount of additive must be used to achieve necessary strength at the risk of embrittlement, because of the weak intermolecular bonding force between the mineral layer and matrix polymer.
Attempts have already been made to produce composite materials by synthesizing a polymer, such as polyamide and polystyrene, in the space between layers of a clay mineral. With conventional techniques, however, it has been difficult for the chains of synthesized organic polymer to fully penetrate between layers of clay mineral; hence, swelling of the interlayer space in the clay mineral is limited, resulting in imperfect dispersion of the silicate layers into organic matrix. This also entails a reduction in aspect ratio of the clay mineral, thus adversely affecting the effect of enhancing mechanical strength. In addition, the bonding between interlayer compound and matrix polymer is not sufficiently high. Consequently, satisfactory reinforcement cannot be achieved by this method.
The polyamides obtained in any of the above-mentioned methods have broad molecular weight distribution—the ratio of weight average molecular weight to number average molecular weight (M
w
/M
n
) is 6 or larger.
For some vinyl compounds, it is possible to prepare polymers of narrow molecular weight distribution by the living anion polymerization or by the group-transfer polymerization (Journal of the American Chemical Society 1983, 105, p. 5706). But these techniques are not applicable to polyamide.
Under the circumstances, we have continued systematic studies to solve the problems stated above, and succeeded in accomplishing this invention.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide new composite materials with high mechanical strengths and excellent high-temperature characteristics, and a process for manufacturing same.
It is another object of the present invention to provide new composite materials of narrow molecular weight distribution, and a process for manufacturing same.
The composite material of this invention comprises a polymer matrix containing polyamide and layers of a silicate uniformly dispersed in the order of magnitude of molecular dimensions in said polymer matrix, each of said silicate layers being 7 to 12 Å thick and the interlayer distance being at least 20 Å, and has high mechanical strength and excellent high-temperature characteristics.
The composite materials according to one aspect of this invention comprise a polymer matrix containing polyamide and layers of a silicate uniformly dispersed in the order of magnitude of molecular dimensions in said polymer matrix, each of said silicate layers being 7 to 12 Å thick, the interlayer distance being at least 30 Å, and said silicate layers combining with part of said polyamide chain through ionic bonding. These materials have exceptionally high mechanical strength and excellent high-temperature characteristics.
The composite materials according to another aspect of this invention comprise a polymer matrix containing polyamide and layers of a silicate uniformly dispersed in the order of magnitude of molecular dimensions in said polymer matrix, each of said silicate layers being 7 to 12 Å thick, the interlayer distance being at least 20 Å, and the molecular weight distribution of said polyamide expressed by the ratio of its weight average molecular weight (M
w
) to its number average molecular weight (M
n
) being 6 or smaller. These materials have exceptionally high mechanical strength and excellent high-temperature characteristics, and the molecular weight distribution of the polyamide contained is very narrow.
The process for manufacturing composite material of this invention comprises the following steps: (1) bringing a swelling agent into contact with a clay mineral having a cation-exchange capacity of 50 to 200 milliequivalent/100 g to form a complex that can be swollen by a polyamide monomer at a temperature higher than the melting point of that monomer; (2) mixing said complex with said polyamide monomer; and (3) heating the mixture obtained in step (2) to a prescribed temperature to effect polymerization.
The process of this invention, which involves the three steps as shown above, gives highly reinforced composite materials with high mechanical strength and excellent high-temperature characteristics, and is also cost-effective because no subsequent treatment for reinforcement (e.g., remelting after polymerization) is required.
The process of this invention may use, in the mixing step, a base catalyst and an activator, and is also capable of producing composite materials with a narrow molecular weight distribution.
The process of this invention not only gives composite materials with superb characteristics as stated above, but also eliminates some of the steps indispensable in conventional manufacturing processes.


REFERENCES:
patent: 3372137 (1968-03-01), Tierney
patent: 3883469 (1975-05-01), Brassat
patent: 4555439 (1985-11-01), Ueeda et al.
patent: 4623586 (1986-11-01), Umeya et al.
patent: 4810734 (1989-03-01), Kawasumi et al.
patent: 4894411 (1990-01-01), Okada et al.
patent: 5164460 (1992-11-01), Yano et al.
patent: 5936023 (1999-08-01), Kato et al.
patent: 48-103653 (1973-12-01), None
patent: 55-38865 (1980-03-01), None
patent: 109998 (1983-08-01), None
patent: 58-35542 (1983-08-01), None
patent: 1204305 (1984-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composite material and process for manufacturing same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composite material and process for manufacturing same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite material and process for manufacturing same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2547376

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.