Composite ion exchange membrane for use in a fuel cell

Chemistry: electrical current producing apparatus – product – and – With pressure equalizing means for liquid immersion operation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S006000

Reexamination Certificate

active

06689501

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to composite ion exchange membranes, and in particular, composite ion exchange membranes for use in solid polymer electrolyte fuel cells.
BACKGROUND OF THE INVENTION
Ion exchange membranes are used in a variety of applications. For example, ion exchange membranes are components of electrochemical cells such as solid polymer electrolyte fuel cells, chlor-alkali electrolysis cells, and batteries. Ion exchange membranes are also employed in diffusion dialysis, electrodialysis, pervaporation, and vapor permeation applications. Anion, cation, and amphoteric ion exchange membranes are known.
Ion exchange membranes may comprise dense polymer films. For example, Nafione® membranes are commercially available dense film perfluorosulfonic acid ion exchange membranes suitable for use in solid polymer electrolyte fuel cells and chlor-alkali electrolysis cells. As another example, commonly assigned U.S. Pat. No. 5,422,411, incorporated herein by reference in its entirety, describes dense ion exchange membranes comprising polymeric compositions comprising substituted &agr;,&bgr;,&bgr;-trifluorostyrene monomers. Current dense film ion exchange membranes suffer certain practical limitations for use in electrochemical cells such as fuel cells, such as cost and thickness, for example.
For ease of handling, for example, in the preparation of membrane electrode assemblies (“MEA”) for use in fuel cells, the mechanical strength of the membrane in the dry state and hydrated state is important. In electrochemical applications, such as electrolytic cells and fuel cells, the dimensional stability of the membrane during operation is also important. Further, to improve performance, it is generally desirable to reduce membrane thickness and to decrease the equivalent weight of the membrane electrolyte, both of which tend to decrease both the mechanical strength and the dimensional stability in the hydrated state.
One approach for improving mechanical strength and dimensional stability relative to dense film ion exchange membranes is through the use of a porous reinforcing support material. For example, an unsupported membrane can be preformed and then laminated to the reinforcing support, or a dense film may be formed directly on a surface of the reinforcing support. The reinforcing support is typically selected so that it imparts some mechanical strength and dimensional stability relative to the dense film ion exchange membrane. Composite membranes (discussed below) have also been laminated with reinforcing supports to form reinforced membranes.
Laminating or otherwise combining a reinforcing support with a dense film membrane or a composite membrane, while increasing mechanical strength and dimensional stability, is not totally beneficial. One reason is that the reinforcing support tends to defeat the purpose of a thin membrane by increasing the overall thickness. Another reason, which also leads to reduced ionic conductivity, is due to the “shadowing” effect of the reinforcing support. The shortest path for an ion through a membrane is a perpendicular path from one surface to the other surface. Reinforcing supports are typically made from materials that are not ion-conductive. Those parts of the reinforced ion exchange membrane where an ion cannot travel perpendicularly across the membrane, but must take a circuitous route around the reinforcing support, are “shadowed” areas. The presence of shadowed areas in the reinforced membrane reduces the effective area of the membrane that actively conducts ions, thereby decreasing the effective ionic conductivity of the membrane.
Another approach for improving mechanical strength and dimensional stability in ion exchange membranes is to impregnate an ion-conductive material into a porous substrate material to form a composite membrane. Such composite ion exchange membranes prepared by impregnating commercially-available microporous polytetrafluoroethylene (ePTFE) film (Gore-Tex®; W.L. Gore & Associates, Inc., Elkton, Md.) with Nafion®, have been described in the Journal of the Electrochemical Society, Vol. 132, pp. 514-515 (1985). The major goal in the study was to develop a composite membrane with the desirable features of Nafion®, but which could be produced at a low cost. Similarly, U.S. Pat. Nos. 5,547,551, 5,599,614 and 5,635,041 describe composite membranes comprising microporous expanded PTFE substrates impregnated with Nafion®. Gore-Select® membranes (W.L. Gore & Associates, Inc., Elkton, Md.) are composite membranes comprising a microporous expanded PTFE membrane having an ion exchange material impregnated therein.
Composite membranes incorporating other porous substrate materials, such as polyolefins and poly(vinylidene fluoride) and other ion exchange materials, have also been described. For example, commonly assigned U.S. Pat. No. 5,985,942, incorporated herein by reference in its entirety, describes composite membranes comprising a porous substrate and, inter alia, ion exchange materials comprising substituted &agr;,&bgr;,&bgr;-trifluorostyrene polymers and copolymers.
Composite ion exchange membranes suitable for use in fuel cells, in addition to having suitable mechanical strength and dimensional stability, should also have suitable ionic conductivity and be substantially impermeable to gas reactants. To achieve these aims, current composite ion exchange membranes, such as the Gore-Select® membranes, are relatively thin and the microporous substrate is impregnated throughout with an ion exchange material. These composite ion exchange membranes are also typically uniform and integral, meaning a continuous impregnation of the microporous membrane such that no pin holes or other discontinuities exist within the composite structure.
While current composite ion exchange membranes developed for use in fuel cells have achieved a measure of success, there are still areas for additional improvement. First, as noted above, the microporous substrate is filled with ion exchange material. Generally speaking, the ion exchange material is the most expensive component of the composite. Thus, essentially the maximum cost of ion exchange material is incurred for a given thickness of microporous substrate in current composite ion exchange membranes for use in fuel cells. Second, current methods for producing such composite ion exchange membranes typically involve multiple coating steps to fully impregnate the substrate with ion exchange material. Alternatively, or in addition, such methods comprise steps for facilitating impregnation, such as ultrasonication, or adding surfactants to the impregnation solution. These steps increase the time, complexity, and cost of producing composite ion exchange membranes. This is particularly the case where surfactants are added to the impregnation solution, which generally necessitates an additional processing step to remove the surfactant before using the composite membrane in a fuel cell.
It is desirable to have a composite ion exchange membrane suitable for use in fuel cells that is less expensive and easier to produce than current composite ion exchange membranes and that provides comparable fuel cell performance.
SUMMARY OF THE INVENTION
A composite membrane and methods for making the composite membrane are provided. In one embodiment, the present composite membrane is an asymmetric composite membrane for use in a fuel cell membrane electrode assembly, and the composite membrane comprises:
(a) a porous polymeric substrate;
(b) an impregnant comprising a cation exchange material, the impregnant partially filling the substrate such that the substrate comprises a first region having pores substantially filled with the impregnant, and a second substantially porous region; and
(c) a dense surface layer comprising the cation exchange material, the dense layer contiguous with the first region of the substrate,
wherein the substrate has greater than 10% residual porosity, and the composite membrane is substantially gas impermeable and has a substantially porous major surface.
In

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composite ion exchange membrane for use in a fuel cell does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composite ion exchange membrane for use in a fuel cell, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite ion exchange membrane for use in a fuel cell will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3339691

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.