Composite endovascular guidewire

Surgery – Diagnostic testing – Flexible catheter guide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06488637

ABSTRACT:

FIELD OF THE INVENTION
This invention is a surgical device. It is a composite guidewire for use in a catheter and is used for accessing a targeted site in a lumen system of a patient's body. The composite guidewire assembly is especially useful for accessing peripheral or soft tissue targets. The invention includes multi-section guidewire assemblies having (at least) super-elastic distal portions. The mid-section joining the distal section to the proximal section preferably has varying stiffness. The guidewire may have a composite proximal section made by swaging or pulling the composite section through a die to join the outer layer to the inner core. A variation of the inventive guidewire includes the coating of the wire with a tie layer and then with a one or more lubricious polymers to enhance its suitability for use within catheters and with the interior of vascular lumen.
BACKGROUND OF THE INVENTION
Catheters are used increasingly as a means for delivering diagnostic and therapeutic agents to internal sites within the human body that can be accessed through various of the body's lumen systems, particularly through the vasculature. A catheter guidewire is used for guiding the catheter through the bends, loops, and branches forming the blood vessels within the body. One method of using a guidewire to direct the catheter through the torturous paths of these systems of lumen involves the use of a torqueable guidewire which is directed as a unit from a body access point such as the femoral artery to the tissue region containing the target site. The guidewire is typically bent at its distal end, and may be guided by alternately rotating and advancing the guidewire along the small vessel pathway to the desired target. The guidewire and the catheter are advanced by alternately moving the guidewire along a distance in the vessel pathway, holding the guidewire in place, and then advancing the catheter along the axis of the guidewire until it reaches the portion of the guidewire already advanced farther into the human body.
The difficulty in accessing remote body regions, the body's periphery or the soft tissues within the body such as the brain and the liver, are apparent. The catheter and its attendant guidewire must both be flexible, to allow the combination to follow the complicated path through the tissue, and yet stiff enough to allow the distal end of the catheter to be manipulated by the physician from the external access site. It is common that the catheter is as long as a meter or more.
The catheter guidewires used in guiding a catheter through the human vasculature have a number of variable flexibility constructions. For instance, U.S. Pat. Nos. 3,789,841; 4,545,390; and 4,619,274 show guidewires in which the distal end section of the wire is tapered along its length to allow great flexibility in that remote region of the guidewire. This is so, since the distal region is where the sharpest turns are encountered. The tapered section of the wire is often enclosed in a wire coil, typically a platinum coil, to increase the column strength of the tapered wire section without significant loss of flexibility in that region and also to increase the radial capacity of the guidewire to allow fine manipulation of the guidewire through the vasculature.
Another effective guidewire design is found in U.S. Pat. No. 5,095,915. This patent shows a guidewire having at least two sections. The distal portion is encased in an elongated polymer sleeve having axially spaced grooves to allow increased bending flexibility of the sleeve.
Others have suggested the use of guidewires made of various super-elastic alloys in an attempt to achieve some of the noted functional desires.
U.S. Pat. No. 4,925,445, to Sakamoto et al., suggests the use of a two-portion guidewire having a body portion relatively high in rigidity and a distal end portion which is comparatively flexible. At least one portion of the body and the distal end portions is formed of super-elastic metallic materials. Although a number of materials are suggested, including Ni—Ti alloys of 49 to 58% (atm) nickel, the patent expresses a strong preference for Ni—Ti alloys in which the transformation between austentite and martensite is complete at a temperature of 10° C. or below. The reason given is that “for the guidewire to be useable in the human body, it must be in the range of 10° to 20° C. due to anesthesia at a low body temperature.” The temperature of the human body is typically about 37° C.
Another document disclosing a guidewire using a metal alloy having the same composition as a Ni—Ti super-elastic alloy is WO91/1512 (to Sahatjian et al. and owned by Boston Scientific Corp.). That disclosure suggests a guidewire made of the precursor to the Ni—Ti elastic alloy. Super-elastic alloys of this type are typically made by drawing an ingot of the precursor alloy while simultaneously heating it. In the unstressed state at room temperature, such super-elastic materials occur in the austenite crystalline phase and, upon application of stress, exhibit stress-induced austenite-martensite (SIM) crystalline transformations which produce nonlinear elastic behavior. The guidewires described in that published application, on the other hand, are said not to undergo heating during the drawing process. The wires are cold-drawn and great pain is taken to assure that the alloy is maintained well below 3000 F. during each of the stages of its manufacture. This temperature control is maintained during the step of grinding the guidewire to form various of its tapered sections.
U.S. Pat. No. 4,665,906 suggests the use of stress-induced martensite (SIM) alloys as constituents in a variety of different medical devices. Such devices are said to include catheters and cannulas.
U.S. Pat. No. 4,969,890 to Sugita et al., suggests the production of a catheter having a main body fitted with a shape memory alloy member, and having a liquid injection means to supply a warming liquid to allow the shape memory alloy member to recover its original shape upon being warmed by the fluid.
U.S. Pat. No. 4,984,581, to Stice, suggests a guidewire having a core of a shape memory alloy, the guidewire using the two-way memory properties of the alloy to provide both tip-deflecting and rotational movement to the guidewire in response to a controlled thermal stimulus. The controlled thermal stimulus in this instance is provided through application of an RF alternating current. The alloy selected is one that has a transition temperature between 36° C. and 45° C. The temperature 36° C. is chosen because of the temperature of the human body; 45° C. is chosen because operating at higher temperatures could be destructive to body tissue, particularly some body proteins.
U.S. Pat. No. 4,991,602 to Amplatz et al., suggests a flexible guidewire made up of a shape memory alloy such as the nickel-titanium alloy known as nitinol. The guidewire is one having a single diameter throughout its midcourse, is tapered toward each end, and has a bead or ball at each of those ends. The bead or ball is selected to allow ease of movement through the catheter into the vasculature. The guidewire is symmetrical so that a physician cannot make a wrong choice in determining which end of the guidewire to insert into the catheter. The patent suggests that wound wire coils at the guidewire tip are undesirable. The patent further suggests the use of a polymeric coating (PTFE) and an anticoagulant. The patent does not suggest that any particular type of shape memory alloy or particular chemical or physical variations of these alloys are in any manner advantageous.
Another catheter guidewire using Ni—Ti alloys is described in U.S. Pat. No. 5,069,226, to Yamauchi, et al. Yamauchi et al. describes a catheter guidewire using a Ni—Ti alloy which additionally contains some iron, but is typically heat-treated at a temperature of about 400° to 500° C. so as to provide an end section which exhibits pseudo-elasticity at a temperature of about 37° C. and plasticity at a temperature below about 80° C. A vari

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composite endovascular guidewire does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composite endovascular guidewire, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite endovascular guidewire will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2995765

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.