Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Making catalytic electrode – process only
Reexamination Certificate
2002-05-02
2004-06-15
Bell, Bruce F. (Department: 1741)
Catalyst, solid sorbent, or support therefor: product or process
Catalyst or precursor therefor
Making catalytic electrode, process only
C029S623100, C029S623500, C429S047000, C429S047000, C429S047000
Reexamination Certificate
active
06750169
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to composite electrodes and functional layers for electrode reactions for use with solid-state ionic devices, and solid oxide fuel cells in particular.
BACKGROUND OF THE INVENTION
The following references are referred to herein by their numerical reference and the contents of each is incorporated herein by reference.
1. Erning, J. W., Hauber, T., Stimming, U. Wippermann, K., Catalysis of the electrochemical processes on solid oxide fuel cell cathodes, Journal of Power Sources 61 (1996) 205-211.
2. M. Watanabe, H. Uchida, M. Shibata, N. Mochizuki and K. Amikura, High performance catalyzed—reaction layer for medium temperature operating solid oxide fuel cells, J. Electrochem. Soc., vol. 141, (1994) 342-346.
3. Sahibzada, M., Benson, S. J., Rudkin, R. A., Kilner, J. A., Pd-promoted La
0.6
Sr
0.4
Co
0.2
Fe
0.8
O
3
cathodes. Solid State Ionics 113-115 (1998) 285-290.
4. M. M. Murphy, J. Van herle, A. J. McEvoy, K. Ravindranathan Thampi, Electroless deposition of electrodes in solid oxide fuel cells, J. Electrochem. Soc., vol. 141 (1994) 30 L94-96.
5. Uchida et al. Shin-ichi Arisaka and Masahiro Watanabe, Paper B-IN-05 at 121
st
International Conference on Solid State Ionics (1999) 154-155.
Background
Solid state ionic devices typically consist of a fully dense electrolyte sandwiched between thin electrode layers. It is known that the principal losses in most solid state ionic devices occur in the electrodes or the electrode/electrolyte interfaces. Therefore, minimization of these losses is critical to efficient operation of these devices.
Solid oxide fuel cells (SOFC) are theoretically very efficient energy conversion devices that have the potential of becoming a commercial product for numerous uses. A SOFC is a solid electrochemical cell which consists of a solid electrolyte impervious to gases, sandwiched between a porous cathode and a porous anode. Oxygen gas is transported through the cathode to its interface with the electrolyte where it is reduced to oxygen ions, which migrate through the electrolyte to the anode. At the anode, the ionic oxygen reacts with fuels such as hydrogen or methane and release electrons. The electrons travel back to the cathode through an external circuit to generate electric power.
The construction of conventional SOFC electrodes are well known. Electrodes are often applied as composites of an electron conducting material and an ion conducting material. For instance, an anode may consist of electronic conducting nickel (Ni) and ionic conducting yttria stabilized zirconia (YSZ) while the cathode may consist of a perovskite such as La
1−x
Sr
x
MnO
3−&dgr;
(LSM) as the electron conducting material and YSZ as the ion conductor.
Conventional SOFCs exhibit high performance at operating temperatures of 1000° C. However, such high temperature operation has disadvantages such as physical or chemical degradation of the construction materials. Therefore, it is desirable to reduce the operating temperature of a SOFC stack to a medium temperature of about 700° C. However, at such medium temperatures, electrode reaction rates decrease significantly. Prior art efforts to increase electrode reactivity at lower temperatures have focussed on optimizing the electrode microstructure and by introducing catalytic materials into the electrode structure.
It is well known to provide an activated surface on the fuel cell electrodes by means of a catalyst to aid the electrochemical process. Nickel is commonly used as a catalyst on the anode side for oxidation of fuel. On the cathode side, ceramic cathode materials typically used in SOFCs, such as perovskites have a high activation energy for oxygen reduction. Therefore, the activation energy may be reduced for the oxygen reduction reaction by adding noble metals such as Au, Ag, Pt, Pd, Ir, Ru and other metals or alloys of the Pt group. Erning et al. [1] reported that addition of highly dispersed noble metals (<=0.1 mg/cm
2
) lowers the activation energy of the oxygen reduction reaction at the cathode of an SOFC. M. Watanabe [2] also found that the anodic polarization resistance and its activation energy were greatly decreased by loading only a small amount of catalyst such as Ru, Rh, and Pt onto a samaria-doped ceria (SDC) anode. A large depolarizing effect was also observed with a Pt-catalyzed LSM cathode, especially at high current densities. Sahibzada et al. [3] has recently reported that LSCF electrodes which were impregnated with small amounts of Pd resulted in 3-4 times lower cathodic impedance in the temperature range 400 to 750° C. The overall cell resistance decreased 15% at 6500° C. and 40% at 550° C.
For economic reasons, noble metal catalysts are applied in very small amounts to catalyze the electrochemical process at electrodes. The catalysts are conventionally impregnated in the pores of the electrode by a filtration or a chemical process. The impregnation process is frequently followed by a binding process where a binder is superimposed on the deposited particles to provide a secure and durable attachment of the coating with the base material. U.S. Pat. Nos. 3,097,115; 3,097,974; 3,171,757 and 3,309,231 disclose such conventional impregnating processes for porous electrodes.
The catalysts may also be applied by common electroless deposition techniques for Ni, Pd and Ag [4] and replacement plating, as disclosed in U.S. Pat. No. 3,787,244. In this process, an acidic plating solution containing a salt of a noble metal catalyst is forced through the pores of a nickel electrode substrate and the noble metal ions from the dissolved salt replace a thin layer of the nickel surface within the pores.
It is known [1] to form highly dispersed catalyst layers with an amount of less than 0.1 mg/cm
2
from aqueous solutions of Pt, Pd, Ir or Ru salts. A few drops of these solutions were applied onto the electrolyte surface. After drying, the salts were either reduced to metal form by heating under hydrogen (Pt and Pd) or oxidized by heating under air (Ir and Ru), Most recently, Uchida et al. [5] applied nanometer-sized noble metal catalysts to both anode and cathode resulting in appreciably lower overpotential ohmic resistance.
Singheiser (EP 424813) discloses an intermetallic compound layer (0.5-5 &mgr;m) contains 2-70 wt. % of a noble metal such as Pt, Ag or Pd which can be used between electrolyte and electrodes, or to connect electrically two fuel-cells. It is claimed that the fuel cell can be operated at a lower temperature due to higher electrode conductivity.
Because of the cost of noble metals, the application of noble metals in SOFC electrodes so far are mainly limited to its catalytic abilities. All recent efforts have been to add very fine particles of the catalyst in order to maximize the three phase boundary of the catalyst, the gas phase and the electrolyte. The catalyst is either applied as a very thin layer at the electrolyte/electrode boundary or is widely dispersed throughout the electrode.
In U.S. Pat. No. 5,543,239 issued to Virkar et al., an electrocatalyst is incorporated into a electrode microstructure that is claimed to improve the performance of a solid state ionic device by providing a catalyst and by improving electrical conductance. In this disclosure, a porous ionic conductor is applied to a dense electrolyte substrate. An electrocatalyst is then introduced into the porous matrix to produce electrical continuity and a large three phase boundary line length. As a result, the electrocatalyst is applied as a thin layer of small particles over the ionic conductor.
The electrode disclosed by Virkar et al., however, does not solve the problem of electrode instability. It is known that vapor loss of noble metals occurs at even medium SOFC operating temperatures. According to the Thomson-Freundlich (Kelvin) equation, an important aspect of the vapor pressure difference across a curved surface is the increase in vapor pressure at a point of high surface curvature. Thus, t
Ghosh Debabrata
Martel Frank
Tang Zheng
Bell Bruce F.
Bennett Jones LLP
Global Thermoelectric Inc.
LandOfFree
Composite electrodes for solid state devices does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Composite electrodes for solid state devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composite electrodes for solid state devices will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3345964