Components and catalysts for the polymerization of olefins

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Plural component system comprising a - group i to iv metal...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06818583

ABSTRACT:

The present invention relates to catalyst components for the polymerization of olefins, to the catalyst obtained therefrom and to the use of said catalysts in the polymerization of olefins CH
2
═CHR in which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms. In particular the present invention relates to catalyst components, suitable for the stereospecific polymerization of olefins, comprising Ti, Mg, halogen and an electron donor compound selected from esters of substituted succinic acids (substituted succinates). Said catalyst components when used in the polymerization of olefins, and in particular of propylene, are capable to give polymers in high yields and with high isotactic index expressed in terms of high xylene insolubility.
The chemical class of succinates is known in the art. However, the specific succinates of the present invention have never been used as internal electron donors in catalysts for the polymerization of olefins.
EP-A-86473 mentions the use of unsubstituted succinates as internal donors in catalyst components for the polymerization of olefins. The use of diisobutyl succinate and di-n-butyl succinate is also exemplified. The results obtained in terms of isotactic index and yields are however poor.
The use of polycarboxylic acid esters, including succinates, as internal donors in catalyst components for the polymerization of olefins, is also generically disclosed in EP 125911. Diethyl methylsuccinate and diallyl ethylsuccinate are mentioned in the description although they are not exemplified Furthermore, EP263718 mentions, but does not exemplify the use of diethyl methylsuccinate and di-n-butyl ethylsuccinate as internal donors. In order to check the performances of these succinates according to the teaching of the art the applicant has carried out some polymerization tests employing catalyst components containing diethyl methylsuccinate and diisobutyl ethylsuccinate, respectively, as internal donors. As shown in the experimental section, both the so obtained catalysts gave an unsatisfactory activity/stereospecificity balance very similar to that obtained with catalysts containing unsubstituted succinates.
It has been therefore very surprising to discover that the specific substitution in the succinates of the invention generates compounds that, when used as internal donors, give catalyst components having excellent activity and stereospecificity.
It is therefore an object of the present invention to provide a solid catalyst component for the polymerization of olefins CH
2
═CHR in which R is hydrogen or a hydrocarbon radical with 1-12 carbon atoms, comprising Mg, Ti, halogen and an electron donor selected from succinates of formula (I):
wherein the radicals R
1
and R
2
, equal to, or different from, each other are a C
1
-C
20
linear or branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl or alkylaryl group, optionally containing heteroatoms; the radicals R
3
to R
6
equal to, or different from, each other, are hydrogen or a C
1
-C
20
linear or branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl or alkylaryl group, optionally containing heteroatoms, and the radicals R
3
to R
6
which are joined to the same carbon atom can be linked together to form a cycle; with the proviso that when R
3
to R
6
are contemporaneously hydrogen R
6
is a radical selected from primary branched, secondary or tertiary alkyl groups, cycloalkyl, aryl, arylalkyl or alkylaryl groups having from 3 to 20 carbon atoms.
R
1
and R
2
are preferably C
1
-C
8
alkyl, cycloalkyl, aryl arylalyl and alkylaryl groups. Particularly preferred are the compounds in which R
1
and R
2
are selected from primary alkyls and in particular branched primary alkyls. Examples of suitable R
1
and R
2
groups are methyl, ethyl, n-propyl, n-butyl, isobutyl neopentyl, 2-ethylhexyl. Particularly preferred are ethyl, isobutyl, and neopentyl. One of the preferred groups of compounds described by the formula (I) is that in which R
3
to R
5
are hydrogen and R
6
is a branched alkyl, cycloalkyl, aryl, arylalkyl and alkylaryl radical having from 3 to 10 carbon atoms. Particularly preferred are the compounds in which R
6
is a branched primary alkyl group or a cycloalkyl group having from 3 to 10 carbon atoms.
Specific examples of suitable monosubstituted succinate compounds are diethyl sec-butylsuccinate, diethyl thexylsuccinate, diethyl cyclopropylsuccinate, diethyl norbornylsuccinate, diethyl (10-)perhydronaphthylsuccinate, diethyl trimethylsilylsuccinate, diethyl methoxysuccinate, diethyl p-methoxyphenylsuccinate, diethyl p-chlorophenylsuccinate diethyl phenylsuccinate, diethyl cyclohexylsuccinate, diethyl benzylsuccinate, diethyl (cyclohexylmethyl)succinate, diethyl t-butylsuccinate, diethyl isobutylsuccinate, diethyl isopropylsuccinate, diethyl neopentylsuccinate, diethyl isopentylsuccinate, diethyl (1,1,1-trifluoro-2-propyl)succinate, diethyl (9-fluorenyl,succinate, diisobutyl phenylsuccinate, diisobutyl sec-butylsuccinate, diisobutyl thexylsuccinate, diisobutyl cyclopropylsuccinate, diisobutyl (2-norbornyl)succinate, diisobutyl (10-)perhydronaphthylsuccinate, diisobutyl trimethylsilylsuccinate, diisobutyl methoxysuccinate, diisobutyl p-methoxyphenylsuccinate, diisobutyl p-chlorophenylsuccinate, diisobutyl cyclohexylsuccinate, diisobutyl benzylsuccinate, diisobutyl (cyclohexylmethyl)succinate, diisobutyl t-butylsuccinate, diisobutyl isobutylsuccinate, diisobutyl isopropylsuccinate, diisobutyl neopentylsuccinate, diisobutyl isopentylsuccinate, diisobutyl (1,1,1-trifluoro-2-propyl)succinate, diisobutyl (9-fluorenyl)succinate, dineopentyl sec-butylsuccinate, dineopentyl thexylsuccinate, dineopentyl cyclopropylsuccinate, dineopentyl (2-norbornyl)succinate, dineopentyl (10-)perhydronaphthylsuccinate, dineopentyl trimethylsilylsuccinatc, dineopentyl methoxysuccinate, dineopentyl p-methoxyphenylsuccinate, dineopentyl p-chlorophenylsuccinate, dineopentyl, phenylsuccinate, dineopentyl cyclohexylsuccinate, dineopentyl benzylsuccinate, dineopentyl (cyclohexylmethyl)succinate, dineopentyl t-butylsuccinate, dineopentyl isobutylsuccinate, dineopentyl isopropylsuccinate, dineopentyl neopentylsuccinate, dineopentyl isopentylsuccinate, dineopentyl (1,1,1-trifluoro-2-propyl)succinate, dineopentyl (9-fluorenyl)succinate.
Another preferred group of compounds within those of formula (I) is that in which at least two radicals from R
3
to R
6
are different from hydrogen and are selected from C
1
-C
20
linear or branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl or alkylaryl group, optionally containing heteroatoms. Particularly preferred are the compounds in which the two radicals different from hydrogen are linked to the same carbon atom. Specific examples of suitable 2,2-disubstituted succinates are: diethyl 2,2-dimethylsuccinate, diethyl 2-ethyl-2-methylsuccinate, diethyl 2-benzyl-2-isopropylsuccinate, diethyl 2-(cyclohexylmethyl)-2-isobutylsuccinate, diethyl 2-cyclopentyl-2-n-propylsuccinate, diethyl 2,2-diisobutylsuccinate, diethyl 2-cyclohexyl-2-ethylsuccinate, diethyl 2-isopropyl-2-methylsuccinate, diethyl 2,2-diisopropyl diethyl 2-isobutyl-2-ethylsuccinate, diethyl 2-(1,1,1-trifluoro-2-propyl)2-methylsuccinate, diethyl 2-isopentyl-2-isobutylsuccinate, diethyl 2-phenyl-2-n-butylsuccinate, diisobutyl 2,2-dimethylsuccinate, diisobutyl 2-ethyl-2-methylsuccinate, diisobutyl 2-benzyl-2-isopropylsuccinate, diisobutyl 2-(cyclohexylmethyl)2-isobutylsuccinate, diisobutyl 2-cyclopentyl-2-n-propylsuccinate, diisobutyl 2,2-diisobutylsuccinate, diisobutyl 2-cyclohexyl-2-ethylsuccinate, diisobutyl 2-isopropyl-2-methylsuccinate, diisobutyl 2-isobutyl-2-ethylsuccinate, diisobutyl 2-(1,1,1-trifluoro-2-propyl)-2-methylsuccinate, diisobutyl 2-isopentyl-2-isobutylsuccinate, diisobutyl 2,2-diisopropylsuccinate, diisobutyl 2-phenyl-2-n-propylsuccinate, dineopentyl 2,2-dimethylsuccinate, dineopentyl 2-ethyl-2-methylsuccinate, dineopentyl 2-benzyl-2-isopropylsuccinate, dineopentyl 2-(cyclohexylmethyl)-2-isobutylsuccinate, dineopentyl 2cyclopentyl-2-n-propylsuccinate, dineopentyl 2,2-diisobutylsuccinate, di

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Components and catalysts for the polymerization of olefins does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Components and catalysts for the polymerization of olefins, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Components and catalysts for the polymerization of olefins will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3363449

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.