Components and catalysts for the polymerization of olefins

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S124900, C502S124000, C502S125000, C502S126000, C502S127000, C502S134000

Reexamination Certificate

active

06515085

ABSTRACT:

BACKGROUND OF THE INVENTION
The supported highly active and highly stereospecific catalysts for the polymerization of propylene and higher olefins known up to now are obtained by the reaction of an Al alkyl compound partially complexed with an electron-donor compound (outside donor) with a solid component comprising a Ti compound and an electron-donor compound (inside donor) supported on a Mg dihalide in active form.
Examples of such catalysts have been described in British Patent No. 1,559,194 and Belgian Patent No. 868,682.
Those supported catalysts require the use of an inside donor in order to obtain polymers having a high isotactic index. If the inside donor is omitted, polymers having a low isotactic index are obtained.
THE PRESENT INVENTION
One object of this invention is to provide catalyst components which comprise a silicon compound as defined herein-above and which yield catalysts that polymerize the alpha-olefins to high yields of polymers having a high isotacticity index.
This and other objects are achieved by the present invention in accordance with which it has been found, unexpectedly, that it is possible to obtain, with high yield, polymers of alpha-olefins having a high isotactic index by using Ti-containing Mg dihalides-supported catalysts free from inside electron-donor compounds, if an outside donor is used which is a silicon compound containing Si—OR, Si—OCOR or Si—NR
2
bonds.
It has also been found,even more unexpectedly, that the activity and stereospecificity of the catalysts can be further increased if the silicon compound used as outside donor is present as inside donor also in the Ti-containing Mg dihalide-supported component in amounts corresponding to molar ratios between the silicon compound and the supported halogenated Ti- compound comprised between 0.1 and 5.
The above results are surprising if one considers that catalysts are known which are prepared by using, as both inside and outside donor, a silicon compound containing Si—O—C bonds and the activity and stereospecificity of which are not increased over the activity and stereospecificity obtainable with catalysts in which an ester of benzoic acid is used as inside and outside donor.
The catalysts of this invention comprise the product of the reaction between the following components:
(a) an Al trialkyl or Al alkyl compound containing 2 or more aluminum atoms linked to each other through oxygen or nitrogen atoms or through SO
4
or SO
3
groups;
(b) a silicon compound containing one or more Si—OR, Si—OCOR or Si—NR
2
bonds (R being a hydrocarbyl radical); and
(c) a solid comprising, as essential support, an anhydrous Mg dihalide in the active form as defined infra and, supported on said dihalide, a Ti halide or Ti haloalcoholate, or the solid (c) containing supported therein also a silicon compound as defined in (b) in an amount corresponding to a molar ratio between the supported silicon compound and the supported halogenated Ti compound comprised between 0.1 and 5.
The active anhydrous Mg dihalides forming the essential support of component (c) are the Mg dihalides showing in the X-rays powder spectrum of component (c) a broadening of at least 30% of the most intense diffraction line which appears in the powder spectrum of the corresponding dihalide having 1 m
2
/g of surface area, or are the Mg dihalides showing an X-rays powder spectrum in which said most intense diffraction line is replaced by a halo with the intensity peak shifted with respect to the interplanar distance of the most intense line; and/or are the Mg dihalides having a surface area greater than 3 m
2
/g.
The measurement of the surface area of the Mg dihalides is made on component (c) after treatment with boiling TiCl
4
for 2 hours. The found value is considered as surface area of the Mg dihalide.
Very active forms of Mg dihalides are those giving an X-rays powder spectrum in which the most intense diffraction line appearing in the spectrum of the corresponding halide having 1 m
2
/g of surface area is decreased in relative intensity and broadened to form a halo, or are those in which said most intense line is replaced by a halo having its intensity peak shifted with respect to the interplanar distance of the most intense line. Generally, the surface area of the above forms is higher than 30-40 m
2
/g and is comprised in particular between 100-300 m
2
/g.
Active forms are also those deriving from the above forms by heat-treatment in inert hydrocarbon solvents and showing, in the X-rays spectrum, sharp diffraction lines in place of the halos.
The sharp, most intense line of these forms shows a broadening of at least 30% with respect to the corresponding line of the Mg dihalide having 1 m
2
/g of surface area.
Preferred Mg dihalides are Mg dichloride and Mg dibromide. The content in water of the dihalides is generally less than 1% by weight.
By Ti halides or Ti haloalcoholates and esters supported on the active Mg dihalide is meant the above compound which may be chemically or physically fixed on the support, and not extractable from component (c) by treatment of the same with boiling 1,2-dichloroethane for 2 hours.
Components (a), (b) and (c) are made to react with each other in any order; preferably, however, components (a) and (b) are premixed before being contacted with component (c).
The pre-mixing of (a) and (b) is conducted at temperatures comprised, usually, between room temperature and the temperature used in the polymerization process.
The pre-reaction of (c) and (b) may be carried out also at higher temperatures. Also, compound (b) may be incorporated and made to react with component (c) itself. Component (b) is made to react in a molar ratio with respect to the halogenated Ti compound supported on component (c) of at least 1 and in a molar ratio with respect to the Al alkyl compound used as component (a) of less than 20 and preferably comprised between 0.05 and 0.3.
In component (c), the molar ratio between the Mg dihalide and the halogenated Ti compound supported therein is comprised between 1 and 500 and the molar ratio between said halogenated Ti compound and the electron-donor supported on the Mg dihalide is comprised between 0.1 and 50.
The silicon compounds set forth in (b) include compounds of general formula:
R
m
SiY
n
X
p
wherein:
R is an alkyl, alkenyl, aryl, arylalkyl or cycloalkyl radical with from 1 to 20 carbon atoms;
Y is an —OR′, —OCOR′, —NR′
2
group wherein R′, either equal to or different from R, has the same meaning as R;
X is either a halogen or hydrogen atom or an —OCOR″ or —NR″
2
group wherein R″, either equal to or different from R′, has the same meaning as R′;
m, n and p are numbers comprised, respectively, between: 0 and 3 for m, 1 and 4 for n and 0 and 1 for p; and m+n+p is equal to 4.
Other silicon compounds that may be used are compound in which two or more silicon atoms are bound to each other through oxygen or nitrogen atoms.
Examples of these compounds are hexaethoxydisiloxane and symmetrical diphenyltetraethoxydisiloxane:
Preferred silicon compounds are: phenylalkoxysilanes such as phenyltriethoxy or trimethoxysilane, diphenyldimethoxy and diethoxysilane, monochlorophenyldiethoxysilane; alkylalkoxysilanes as, e.g., ethyltriethoxysilane and ethyltriisopropoxysilane.
Examples of other suitable compounds are: chlorotriethoxysilane, acetoxytriethoxysilane, vinyltriethoxysilane, butyltriethoxysilane, triphenylmonoethoxysilane, phenyltricycloethoxysilane, phenyldiethoxydiethylaminosilane, tetraphenoxysilane and tetralkoxysilanes such as tetramethoxysilane.
The silicon compound can be also formed in situ by reaction of, for instance, a halogenated silicon compound such as SiCl
4
with an alcohol or an alcoholate of Mg or Al.
In the catalysts of the invention the silicon compound is present in a combined form in the solid product of the reaction between the various catalyst-forming components, in a molar ratio between the silicon compound and the halogenated Ti compound greater than 0.05 and generally comprised between 0

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Components and catalysts for the polymerization of olefins does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Components and catalysts for the polymerization of olefins, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Components and catalysts for the polymerization of olefins will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3140879

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.