Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Bone
Reexamination Certificate
2000-01-30
2002-12-17
Isabella, David J (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Implantable prosthesis
Bone
Reexamination Certificate
active
06494918
ABSTRACT:
BACKGROUND OF THE INVENTION
A. Field of the Invention
Various embodiments of the invention relate to superhard surfaces and components of various compositions and shapes, methods for making those superhard surfaces and components, and products, which include those superhard surfaces and components. Such products include biomedical devices such as prosthetic joints and other devices. More specifically, some preferred embodiments of the invention relate to diamond and polycrystalline diamond bearing surfaces and prosthetic joints that include diamond and polycrystalline diamond bearing surfaces. Some preferred embodiments of the invention utilize a polycrystalline diamond compact (“PDC”) to provide a very strong, low friction, long-wearing and biocompatible bearing surface in a prosthetic joint. Any bearing surface, including bearing surfaces outside the field of prosthetic joints, which experience wear and require strength and durability will benefit from embodiments of the invention.
B. Description of Related Art
This section will discuss art related to prosthetic joint bearing surfaces. Artificial joint replacement has become a widely accepted successful medical practice in the treatment of arthritic or deformed joints. Hundreds of thousands of joint replacement procedures are performed every year. Prosthetic hip and knee replacement comprise the vast majority of these procedures, however many other joints are also treated as well including, but not limited to, the shoulder, elbow, wrist, ankle, and temparomandibular joints. Additionally, there are other joints, such as the intervertebral disk joint of the spine, which are not commonly replaced with prosthetic joints, but which might be amenable to such treatment to remedy disease states if sufficiently durable materials in functional designs were available.
The ideal total artificial joint prosthesis can be characterized in terms of flexibility, durability, and compatibility. Flexibility: An ideal total joint prosthesis should restore a normal range of motion, allowing all activities possible with a normal natural joint without an increase in the relative risk of dislocation. Durability: The mechanical parts of the articulation should function without wearing out or breaking, and the implant's fixation to the recipient's skeleton should remain rigidly intact for the duration of the recipient's lifetime, without requiring restrictions on the intensity of activities or the degree of load bearing beyond those applying to a natural joint. Compatibility: The prosthetic materials and wear byproducts should be biocompatible, and should not elicit toxic, inflammatory, immunologic, or other deleterious reactions in the host recipient. Currently available devices fall short of fulfilling these criteria in one or more significant ways. It is the objective of the current invention to improve upon the prior technologies in terms of meeting these criteria.
In general, there are two types of artificial joints—articulating joints and flexible hinge joints. Articulating joints include hip, knee, shoulder, ankle and other joints. Flexible hinge joints include silastic and metacarpal-phalangeal joints. In the past, articulating joints have consisted typically of a hard surface (metal or ceramic) mated to a plastic surface (ultra high molecular weight polyethylene). Other joints have been composed of variations of hard on hard articulations (metal on metal and ceramic on ceramic). Articulating joints may take a myriad of configurations including variations on a ball in socket design, such as with a hip and shoulder joint, and variations on a hinge design as with a knee, elbow, or metacarpal-phalangeal joint. In every case, the prosthesis is designed to restore to the greatest extent possible, the functional range of motion, and mechanical stability of the affected joint.
As a detailed example of problems found in the prior art, we will review the hip joint. It includes a convex spherical ball (femoral head) and a concave socket (acetabular socket) articulation. Hip joint replacement consists of replacing the damaged articular surfaces with new articulating bearing surfaces. On the acetabluar side, a hemisphere-like cup is placed in the patient's damaged or worn socket, and fixed by some means to the patient's bone. On the femoral side, the prosthetic replacement consists of a sphere-like ball designed to fit into, and articulate with the prosthetic acetabular cup. The sphere-like ball may be a resurfacing device designed to fit over the patient's own femoral head (so called “surface replacement”). Or more commonly it consists of a ball attached to a stem, which is inserted into the femoral canal anchoring the prosthesis to the patient's femur. The ball and socket work as a pair in similar fashion to the original hip, restoring a partial range of linear and rotational motion.
Alternatively, only a surface replacement or a ball and stem set are provided without a corresponding socket for a hemiarthroplasty procedure (discussed below). For total hip joint replacement, the most commonly used device consists of a metal head articulation with a high density ultra high molecular weight polyethylene (UHMWPE) surface, but ceramic (alumina, and partially stabilized zirconia) heads are also used, having certain advantages as well as disadvantages relative to their metal counterparts. Metal on metal, and ceramic on ceramic articulations are also used in routine medical practice elsewhere in the world, and are being used on an investigational basis in the United States.
Replacement of only one half of the hip joint is called hemiarthroplasty. This is performed when only one of the articulating portions of the joint is damaged, as with avascular necrosis of the femoral head, or in the case of a hip fracture that is not amenable to repair. The damaged portion is replaced with a prosthetic articulation designed to function with the remaining natural biological portion of the joint. The requirements are somewhat different here than with a total articular replacement, in that the artificial portion must match the contours of the anatomic segment, and must be conducive to preservation of the function of the natural segment. This would include having a surface smooth enough to minimize wear and tear to the natural joint surface, and optimization of surface material properties and contours that would encourage entrainment of joint fluid into the joint space. This entrainment of synovial fluid is essential to minimize wear to, and maintain nutrition and function of the biological joint surface.
Prosthetic joint implants must be securely anchored to the recipient's bone to function properly. This fixation may be achieved through the use of cementing agents, typically consisting of polymethylmethacrylate cement, through biological fixation techniques including direct osseointegration to metal or ceramic fixation surfaces and bone ingrowth into porous surfaces on implant surfaces, or through a mechanical interference press fit between the implant and the host bone. Preservation and maintenance of this secure fixation is critical to the long-term success of the prosthetic construct.
When evaluating prior art technology relative to the criteria previously established for an ideal prosthetic joint, we find that metal balls articulating with polyethylene cups do not provide optimal results. Due to geometric restrictions on the implant design imposed by implant material properties, and anatomic constraints, artificial hips have a decreased safe range of motion compared to normal natural counterparts. The polyethylene bearings may wear through after between 5 and 20 years of service, depending upon factors such as patient age, weight and activity level. The particulate debris resulting from this normal wear often results in inflammatory reactions in the bone surrounding and anchoring the implants, resulting in severe erosion of the bone. This is called “osteolysis” and has proven to be a most prevalent cause of failure and subsequent
Blackburn Dean C.
Dixon Richard H.
Gardinier Clayton F.
Jensen Kenneth M.
Pope Bill J.
Diamicron, Inc.
Isabella David J
McCarthy Daniel P.
Parsons Behle & Latimer
LandOfFree
Component for a prosthetic joint having a diamond load... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Component for a prosthetic joint having a diamond load..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Component for a prosthetic joint having a diamond load... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2987227