Data processing: database and file management or data structures – Database design – Data structure types
Reexamination Certificate
1999-02-22
2002-03-26
Choules, Jack (Department: 2771)
Data processing: database and file management or data structures
Database design
Data structure types
C707S793000, C707S793000, C707S793000, C707S793000, C707S793000, C707S793000, C709S201000, C709S203000, C705S001100, C705S002000, C705S003000, C345S215000, C345S215000, C345S215000, C345S960000, C345S960000
Reexamination Certificate
active
06363393
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
Not applicable.
1. A Field of the Invention
The invention provides a method, and architecture for providing a component based object-relational database infrastructure and a visual interface for presenting data, information, documents, and knowledge that are managed by or through that database to a user.
2. Background of the Invention
Due to a variety of economic, regulatory, and care related influences, healthcare organizations need to invest in information technology that supports the interdisciplinary and cross-departmental process of care of an individual patient throughout a number of encounters over a long period of time and, very often, across multiple geographic locations. The key trends driving this investment need include the massive transition to managed-care, the growing share of capitated contracts in the healthcare revenue structure, the emergence of disease-management practices, and accreditation requirements for outcome reporting. The common denominator in these trends is the recognition that the patient is a client of the entire organization rather than a client of distinct departments or service providers.
Users of healthcare information technology systems are also pressing for new and improved information capabilities that will allow them to readily access stored knowledge that centers around a patient, a patient's problems, and the services provided to a patient. In addition, administrators and analysts need to access data that will allow them to identify and adopt “best practices” across a healthcare organization to improve patient service while reducing or limiting cost.
Existing healthcare information technology fails to meet the needs of the industry. To date, the primary focus of healthcare information systems has been primarily to automate the administrative and financial functions of discrete departments. This focus has left many healthcare organizations with incompatible legacy systems that do not allow them to access their stored information in a way that their business now requires.
New technology has been applied to healthcare and other information systems in an attempt to provide the type of access to enterprise wide information that many businesses require. Object-oriented programming techniques and databases have been applied to this problem and object-oriented technology is making great strides among technologists. The benefit of this technology has not yet trickled down to the end users. User interfaces to object-oriented systems and databases are typically standard windows based graphical user interfaces, which even after great effort to tailor the graphical user interface (GUI) to a particular business need, require extensive training for end users and provide access to the stored information in very limited ways. In addition, data from these database systems is typically accessed and provided in a tabular format that requires much study to decipher or use.
Another technology applied to this problem is data warehousing. A data warehouse is a computer system that collects and analyzes summary data from different business units in an organization on a periodical basis. Data in the data warehouse is typically supplied from data marts which are smaller scale databases that are tailored to contain only information from a particular business unit or subset of the enterprise. The data warehouse includes information about how the warehouse is organized and any connections between data. Generally, this allows a user of the data warehouse to access data through what appears to be a single server to analyze trends in the overall business. OLAP (on-line analytical processing) databases are sometimes used with data warehouses. OLAP databases are relational database systems capable of handling queries that are more complex than standard relational databases through multidimensional access to data and special indexing techniques.
While data warehousing is useful for some purposes, it is of little help to a healthcare professional trying to provide service to a patient who needs instantaneous access to each problem reported by this patient in each of the patient's encounters with the healthcare organization. In addition, user interfaces to data warehouses are typically standard windows GUIs and the data is accessed by and provided to the end user in tabular format.
The clinical data repository is another approach to curing the ills of healthcare information technology. A clinical data repository is a computer system that collects and analyzes data from different clinical information systems in the organization. Clinical information systems include Orders, Labs, Pharmacy, Radiology, and other systems that capture and process clinical data. As with the other systems described, clinical data repositories are limited in the scope of the data that they serve by virtue of being designed for clinical data while related financial and management data is typically managed by separate data warehouses.
Information technology should provide clinicians and management with activity and financial information for operational effectiveness, quality of care, economic viability, and competitive strategy development. Despite these clearly defined needs, clinicians and management remain handicapped by the lack of timely patient history and encounter data that is fragmented across dozens of different legacy systems. There is no transaction system in place today that is capable of generating integrated views of the key elements that drive the healthcare business. The healthcare business is not unique in this regard, a database or transaction system that meets the needs of the healthcare industry could benefit many other businesses that are struggling with similar problems.
SUMMARY OF THE INVENTION
The present invention meets the aforementioned needs by providing a component based object-relational database infrastructure and user interface. The database infrastructure (DBI) of the invention uses object oriented techniques to describe a business model that is implemented using object-oriented software technology. The user uses or interacts with the database though a component based, object-oriented user interface that presents discrete business model components to the user for manipulation. In particular, the business model is composed of a discrete set of inter-related components where each component is a key element in the business and includes certain attributes and behaviors.
In the system of the invention, a user selects one component of the business model, instantiates an object of that component, then manipulates the object to cause it to interact with another component to generate one or more reports showing information objects and data that explain the relationship between the object and the component it interacts with. The user may then instantiate further objects or examine further relationships.
In one embodiment, the invention provides a system for accessing business data stored in one or more databases by a user. The system presents the user with a plurality of components where each component represents a discrete element of the business model, has a defined relationship with each other component, and includes any number of information objects. Each information object represents an instance of the component business element and can be defined by a particular set of attributes and behaviors. The system further provides means for user selection of a first one of the components, user selection of a first one of the information objects from the first component, and instantiating the first information object. The user can then manipulate the first information object to cause the object to interact with any of the other components. The system then generates a report showing information objects of the other component which represent instances of the other component that are related to the first information object.
In the context of a healthcare business, one component in the business model could be a “client” of t
Choules Jack
Lewis Cheryl
Nutter & McClennen & Fish LLP
LandOfFree
Component based object-relational database infrastructure... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Component based object-relational database infrastructure..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Component based object-relational database infrastructure... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2816526