Brushing – scrubbing – and general cleaning – Attachments – Optical-member-attachable cleaner
Reexamination Certificate
1999-01-08
2001-10-16
Graham, Gary K. (Department: 1744)
Brushing, scrubbing, and general cleaning
Attachments
Optical-member-attachable cleaner
C015S250440, C015S250361
Reexamination Certificate
active
06301742
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to arrangements for distributing an input force to a plurality of predetermined locations, and more particularly, to an arrangement wherein an input force, such as that which is applied by a windshield wiper arm is distributed to a plurality of locations in predetermining magnitudes along a compliant member, such as a windshield wiper blade.
2. Description of the Related Art
Conventional windshield wiper arrangements employ a plurality of metallic beams pivotally coupled to one another. The respective beams, which generally are not resilient or spring-like, are coupled to a windshield wiper blade at their free ends, and the pivoting of the beams with respect to one another approximates compliant bending of the windshield wiper as it travels across the windshield wiper. One goal to be achieved, however, is to provide a compliant support mechanism that, within predeterminable ranges of displacement of the windshield wiper blade in the direction of the windshield, cause a force to be directed by the windshield wiper blade substantially uniformly along its length onto the surface of the windshield, of a magnitude sufficient to perform the desired windshield wiping function, and for a given windshield contour.
The conventional windshield wiper support arrangement, with its plurality of cantilevered beams, cannot achieve a truly compliant functionality, as it stores within itself little, if any, potential energy. Instead, the arrangement of pivotally attached beams merely approximates a truly compliant mechanism. A further problem with the known arrangements lies in the fact that the cantilevered beams have a limited range of displacement in the direction toward the windshield. A beam cannot be displaced beyond the point where its other end will stop against a sequentially superior beam. The limitation on the amplitude capacity, and hence on the simulated compliance effect, places limitations on vehicle designers, as conventional windshield wiper support systems cannot perform adequately when the windshield surface contour has a relatively small radius of curvature anywhere in the wiping path.
In addition to failing to achieve a compliant function, the known windshield wiper support arrangement is implemented at significant complexity and expense. In most cases, the pivoted beams are made of a metal, that typically is highly reflective of light and subject to corrosion upon exposure to the elements. In order to prevent the glare of the sun on the eyes of the operator of the vehicle, as well as to protect against corrosion, each such pivoted beam must have a non-reflective coating applied thereto. This, of course, is per se a costly step that is rendered more expensive and critical when it is realized that the coating process must be executed with accuracy and precision lest the coating material effect adversely the inter-beam pivot couplings. There are numerous problems that can arise when painted or otherwise coated surfaces move pivotally with respect to one another. If the coating is installed prior to assembly of the product, the coating, at least partially as a result of its thickness, will increase the width of the beams, and decrease the size of the apertures through which the pivots are installed On the other hand, if the product is coated after assembly, the coating process is more complex to avoid leaving areas uncoated, and of course, the coating will tend to accumulate at the pivot joints and at the places where the beams communicate with one another. An overly thick coating causes interference fits and abrasion of the coating, while a coating that is too thin will wear prematurely as a result of exposure to the elements. Clearly, coatings will produce problems irrespective of the point in the manufacture of the product at which they are applied.
There is a need, therefore, for a windshield wiper support arrangement that overcomes the problems described hereinabove, and others.
It is, therefore, an object of this invention to provide a windshield wiper frame arrangement that is simple and inexpensive, and which does not require a complex multi-pivoted interconnection between a windshield wiper actuator arm and the windshield wiper blade.
It is another object of this invention to provide a windshield wiper frame arrangement having precisely controllable compliance characteristics in terms of both, force and deflection.
It is also an object of this invention to provide a windshield wiper frame arrangement that avoids the need for mechanical links and joints.
It is a further object of this invention to provide a windshield wiper frame arrangement that can simply and inexpensively be manufactured as an integral unit, and that does not require subsequent painting.
It is additionally an object of this invention to provide a windshield wiper frame arrangement that can be manufactured in a wide variety of aesthetically pleasing configurations, while retaining high compliance and strength characteristics.
It is yet a further object of this invention to provide a windshield wiper frame arrangement that has a compliance capacity that can easily and inexpensively be made to achieve a specific compliance characteristic for a windshield having a predetermined surface contour, or a group of windshields having a predetermined range of surface contours.
SUMMARY OF THE INVENTION
The foregoing and other objects are achieved by this invention which provides, in accordance with a first windshield wiper arrangement aspect of the invention, a windshield wiper arrangement for a windshield of a vehicle, the windshield wiper arrangement being coupled to a windshield wiper arm that is coupled at a first end thereof to the vehicle and at a second end thereof to the windshield wiper arrangement for applying a force thereto with respect to the vehicle. The force is applied in a first direction that urges the windshield wiper arrangement toward the windshield, and a second force is applied which moves the windshield wiper arrangement in a second direction across the windshield. The windshield wiper arrangement has a windshield wiper blade coupled thereto for communicating with the windshield of the vehicle. In accordance with the invention, the windshield wiper arrangement is provided with a windshield wiper blade support system that is integrally formed of a resilient material. The windshield wiper blade support system has a primary beam having first and second and portions arranged axially distal from one another. The primary beam additionally has a central portion between the first and second ends arranged for coupling with the windshield wiper arm. There is additionally provided a plurality of resilient members, each having first and second ends, the first ends of the resilient members being coupled to, and axially along, the primary beam. The second ends thereof are arranged to be compliantly displaceable along respective substantially linear paths of compliance. Each substantially linear path of compliance is substantially parallel to the first direction, and is axially transverse with respect to the primary beam. There additionally is provided a plurality of wiper blade coupling arrangements, each coupled to the second end of a respectively associated one of the plurality of resilient members, for coupling with the windshield wiper blade.
In one embodiment of the invention, there is provided a plurality of resilient interconnection elements integrally formed with the primary beam, each for coupling the second ends of sequentially adjacent ones with the plurality of resilient members to one another. In a further embodiment, a pair of further interconnection elements is further provided for coupling predetermined ones of the second ends of the plurality of resilient members to respective ones of the first and second ends of the primary beam.
In a further embodiment, wherein the windshield wiper is of the type having an elongated blade support extending there among for a length theft corresponds to the distance
Graham Gary K.
Rohm & Monsanto, PLC
LandOfFree
Compliant force distribution arrangement for window wiper does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Compliant force distribution arrangement for window wiper, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compliant force distribution arrangement for window wiper will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2600294