Liquid crystal cells – elements and systems – Particular structure – Interconnection of plural cells in series
Reexamination Certificate
2000-05-26
2001-02-06
Dudek, James A. (Department: 2871)
Liquid crystal cells, elements and systems
Particular structure
Interconnection of plural cells in series
C349S073000, C349S075000, C345S088000, C345S903000
Reexamination Certificate
active
06184953
ABSTRACT:
FIELD OF THE INVENTION
The present invention pertains to compensating for brightness and color variations in tiled, liquid crystal (LC), flat-panel displays and, more particularly, to compensating means to correct for such changes near the tile edges due to optical anomalies, electro-optical aberrations, electronic driving effects, ambient light, LC cell gap, mechanical, or materials variations.
BACKGROUND OF THE INVENTION
Flat-panel displays made in accordance with known liquid-crystal display (LCD) technologies are both limited in size and expensive to manufacture. Inexpensive, larger displays can, in principle, be made by assembling smaller display “tiles”, but such a resultant, larger display generally reveals the seams between the tiles. How to conceal the seams between tiles, so that the assembled, large display looks like a continuous, one-piece unit, is very difficult, because the human eye can detect minute irregularities as long as they are arranged in patterns.
One method for making tiled displays is to connect four tiles together at common locus lines, using an adhesive sealant along the seams between adjacent tiles. The tiles are assembled in an in-plane fashion. This type of construction is shown in co-pending U.S. patent application bearing Ser. No. 08/652,032 (filed on May 21, 1996), entitled “Construction and Sealing of Tiled, Flat-Panel Displays”, hereby incorporated by reference. This method of construction consists of assembling LCD tiles in a planar fashion, by locating the appropriate alignment marks disposed on each tile with matching marks on a common reference plate, usually on the cover or back plate. Specific overlay tolerances are required from such an alignment. The tiles are attached to the cover plate and back plate with an optical adhesive. Prior to assembly, the adjacent tile edges are finished such that they in their final position in the assembly provide a seamless appearance. In addition, the cover and/or back plates may contain opaque masks used to “hide” the seams. The back masks can also serve as light collimating means.
Liquid-crystal display tiles may be fabricated in the same manner as monolithic LCDs with one exception: the inner tile edges at the inter-tile seams generally must have pixels located approximately within a pixel pitch from the inner seal edge, so that the pixel pitch across the seam is substantially the same as that on the tiles. In addition the tile edges will usually have design features that control the position of the seal material in relation to the pixel apertures and that contribute to keeping the cell gap uniform. These issues are described in co-pending patent applications Ser. No. 08/949,357 (filed Oct. 14, 1997) and Ser. No. 09/368,921 (filed Aug. 6, 1999).
As in monolithic LCDs, the two glass plates comprising the LC tile are spaced apart by small transparent balls, while the seal adhesive thickness is generally determined by spacer balls or cylinders embedded in it. Thus there will inherently be some variation in the LC layer thickness near the edges of the tiles. This variation in the LC cell gap causes noticeable discoloration of the pixels near the seams in a tiled, flat-panel LC display. No such artifacts are generally observed on monolithic LCDs because their pixels are never placed into close proximity with the seal located completely outside the pixel array.
A pixel in a color LCD is customarily made up of an aperture opening containing sub-pixels for each primary color, usually red, green and blue (RGB). Because of spatial variations in the amount of optical retardation experienced by light traveling through the LC cell, different wavelengths of light produce dissimilar visual effects, when variations in the LC cell gap thickness exist. This phenomenon compounds the problems arising in the production of tiled flat-panel liquid crystal displays that are required to exhibit a seamless appearance.
The majority of liquid-crystal display modules made today are digitally controlled devices. An optical transmission-drive voltage relationship (T-V curve) or “gamma curve” relates the digital signal values at the input to the voltage across the liquid crystal cell, and therefore to the luminance of each sub-pixel on the display. Unless otherwise noted, the T-V curve is here considered to be an effective relationship that includes the entire display system response from the electronic drive signal to the resulting luminance. In some color schemes, a linear effective relationship is desired, e.g., the NTSC R, G, B system. In other color schemes a more general weighted response curve is preferred, for example, to meet psychophysiological expectations of the viewer. Color is produced by overlaying color filter layers on top of the sub-pixel apertures. Usually three separate color filters are used to produce primary colors that through additive mixing generate all hues within the desired color gamut. In tiled, liquid crystal displays, small cell gap variations near the seams or between tiles result in changes in the effective T-V curve. As a consequence, a tiled flat panel display has an objectionable, “tiled” appearance, in spite of all efforts to geometrically hide the actual seams. Pixel areas near the seams or the tile boundaries will inevitably become visible, because their effective T-V curves differ from those of pixels in the interior of the tile.
Pixel rows and columns adjacent to the inner seams in a matrix-addressed tiled display also have a somewhat different electro-optical response compared to interior pixels away from the seams. For example, in a display with four tiles, these pixels form visually disturbing vertical and/or horizontal bands around the seams through the center of the tiled display. In particular, it is common for such a tiled display to appear seamless in white and black fields, but have quite visible seams in gray-scale fields between white and black. Since there usually are 256 gray-scale levels for each primary color, there is ample opportunity to reveal the seams, especially combined with the ability of the human eye to detect regular patterns emanating from the seams.
Another mechanism that causes color variations in tiled displays arises from the mis-registration of objects in the optical stack. Color filter layers on each tile may be mis-aligned compared to the to the thin film transistor layer. Also, the external masks on the cover and back plates may be mis-registered compared to alignment marks in the stack. Further, the lateral and height positioning of each tile compared to the color filter and thin film layers always involves alignment tolerances. As a consequence each tile edge show a slightly different response to the partially collimated light beam that is traversing the optical stack of the tiled LC display.
Additionally, the LC domains at pixels close to the inner seams are known to have different electro-optical properties. This may be caused, for example, by solvents leaching into the LC material from the seal adhesive. Furthermore, the absence of adjacent pixels, and therefore fringing electrical fields originating from them, also contributes to the dissimilar characteristics of the electro-optical properties of edge pixels.
The seam areas between tiles usually produce additional anomalous stray light that is absent on pixels away from the seams. Anomalous stray light can originate either from the backlight or ambient light, or be produced in the optical stack of the display. These effects arise either from the discontinuous tiled LCD structure or from imperfections in the manufacture or assembly of the tiled display. For example, specular and diffuse reflections from an irregular tile edge surface finish or sub-surface micro-cracks may occur. Air bubbles in the adhesive, material defects, or chipping of the tile glass edges may also contribute additional light emanating from the pixels near the edge of the tiles. Flaws in the tiles or assembly also tend to cause some depolarization of the light passing through pixels close to the seam areas, thus contributing t
Greene Raymond G.
Krusius J. Peter
Skinner Dean W.
Yost Boris
Chowdhury Tarifur R.
Dudek James A.
Rainbow Displays Inc.
Salzman & Levy
LandOfFree
Compensation for edge effects and cell gap variation in... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Compensation for edge effects and cell gap variation in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compensation for edge effects and cell gap variation in... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2605302