Compensation component and process for producing the...

Active solid-state devices (e.g. – transistors – solid-state diode – Integrated circuit structure with electrically isolated... – With pn junction isolation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S544000, C257S509000, C257S510000, C257S514000, C257S513000, C257S332000

Reexamination Certificate

active

06465869

ABSTRACT:

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The present invention relates to a compensation component and to a process for its production. Compensation components are known to be distinguished by the fact that they have a drift path, which is made up in the direction of current flow by n-conducting and p-conducting regions disposed next to or above one another and alternating with one another. In that case, the n-conducting and p-conducting regions are doped to such a level that their charges compensate for one another and, in the case of blocking, the entire drift path is cleared of charges. In the case of conduction or passage, however, the n-conducting and p-conducting regions contribute significantly more to the current flow than regions of one type of conduction, that is for example n-conducting regions, in the case of conventional components.
With a high blocking capability, compensation components consequently have a low on resistance R
on
.
Compensation components are known to be constructed both as vertical components and as lateral components (in that respect, see U.S. Pat. Nos. 4,754,310 and 5,216,275). In the case of vertical components, the source electrode and gate electrode are, for example, located on an upper side of a semiconductor body, while the drain electrode is provided on an underside, lying opposite the upper side. The compensation regions are then n-conducting and p-conducting layers, also known as columns, which extend, alternating with one another, in the interior of the semiconductor body in the direction between the source and drain.
In the case of lateral components, two V-shaped grooves or trenches may have been introduced into a semiconductor body. One of those trenches receives the source electrode and the gate electrode, while the other trench is intended for the drain electrode. The compensation regions are provided in that case as n-conducting and p-conducting layers disposed above one another and alternating with one another in the region of the semiconductor body between the two trenches.
In the case of the production of compensation components, vertical structures and lateral structures each have their own advantages and disadvantages:
In the case of vertical structures, the source electrode and the drain electrode can be produced considerably more easily on the surfaces of the semiconductor body lying opposite one another than the source and drain in lateral structures. However, in the case of vertical structures, the creation of a drift path receiving a blocking voltage from n-conducting and p-conducting regions alternating with one another and extending in the vertical direction using the build-up technique by repeated epitaxy with respectively successive ion implantation and diffusion, for example using what is known as CoolMOS technology, is relatively complex. In the case of lateral structures, on the other hand, the n-conducting and p-conducting compensation regions alternating with one another can be produced much more easily in comparison with the build-up technique of the vertical structures, in that n-conducting and p-conducting layers are successively applied to a semiconductor wafer by epitaxy. If appropriate, doping by implantation may also be carried out instead of epitaxy. However, as already mentioned above, the source and drain terminals are problematical in the case of lateral structures, since the layers forming the compensation regions have to be connected to the source and drain with as little impedance as possible. So far, that has only been possible with the aid of complex trench technology with subsequent filling.
To sum up, therefore, in the case of vertical structures the creation of the drift path is very complex, while in the case of lateral structures the source and drain terminals cause considerable problems.
Due to the difficulties presented above, so far compensation components have only been produced as vertical transistors, using a plurality of epitaxial layers for the build-up of the drift path. The ultimately column-like doping of the n-conducting and p-conducting regions is respectively introduced into the epitaxial layers with the aid of implantation.
Another, likewise complex method for producing a vertical transistor is to create the drift path by introducing the doping into very deeply etched trenches through the use of various processes (see U.S. Pat. No. 4,754,310).
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a compensation component and a process for producing the compensation component, which overcome the hereinafore-mentioned disadvantages of the heretofore-known devices and processes of this general type and in which a drift path and source and drain terminals can be produced in a simple way.
With the foregoing and other objects in view there is provided, in accordance with the invention, a compensation component, comprising a trough-shaped trench having side surfaces and a bottom surface. A drift path is disposed between two active zones. The drift path has a stacked sequence of layers of p-conducting and n-conducting regions. The drift path with the p-conducting and n-conducting regions is extended along the side surfaces and the bottom surface of the trench.
With the objects of the invention in view, there is also provided a process for producing a compensation component, which comprises providing a semiconductor body having a surface. A trench having a bottom surface and side walls is introduced into the semiconductor body using an anisotropic etching agent. p-conducting and n-conducting layers are alternately provided on the bottom surface and the side walls of the trench. The p-conducting and n-conducting layers are removed from the surface of the semiconductor body in a planarizing step leaving a remaining groove on the p-conducting and n-conducting layers. The remaining groove is filled with an insulating material or silicon.
In the case of a field-effect resistor used as a compensation component, the two active zones between which the drift path extends are the source zone and the drain zone. The sequence of layers forming the drift zone is then stacked in a direction perpendicular to a joining line between the source zone and the drain zone. The individual layers run with their longitudinal extent in the region between the source zone and the drain zone.
In accordance with another feature of the invention, a broad groove or trench is therefore etched into a silicon semiconductor body through the use, for example, of a KOH etching agent. In this case, the silicon semiconductor body is selected according to the desired voltage for which the compensation component is to be used.
The KOH etching agent is known to have the property of stopping the etching in a silicon body on a (111) plane, while all other lattice planes of the silicon are etched. A groove or trench produced in this way on a (100) silicon substrate therefore has a wall inclination of approximately 55°.
P-conducting and n-conducting layers are alternately applied to the silicon body prepared in this way and provided with a trench with a wall inclination of approximately 55°. That can take place by doped epitaxy or by epitaxy and subsequent implantation. The layer thickness of the individual layers which later form the drift path in this case can be adapted to the requirements for the compensation component. In principle, the layers can be all the thinner the lower the thermal loading.
Once the desired number of layers have been created in the groove or trench, a planarizing step is performed, in which the layers applied to the semiconductor body are removed back to the original surface of the semiconductor body or wafer. A chemical-mechanical polishing (CMP) or an anisotropic etching may also be used in this case.
Should there still be one remaining trench, it is filled with oxide. However, it is also possible to already fill such a “residual trench” with lowly doped silicon during the epitaxial steps.
In the structure obtained in this way, p-conducting and n-conducting regio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compensation component and process for producing the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compensation component and process for producing the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compensation component and process for producing the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2927679

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.