Compatible polymeric mixtures

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

525 64, 525166, 428483, C08L 3308, C08L 3310, C08L 6702

Patent

active

052506231

DESCRIPTION:

BRIEF SUMMARY
OBJECT OF THE INVENTION

The invention relates to compatible polymer blends comprising polyarylacrylates and polyesters.


BACKGROUND ART

According to the general definition, "polyesters" represent macromolecular substances, which are characterized by the presence of carboxylester groups in the repeating units of the main chains (cf. H. Mark et al., Encyclopedia of Polymer Science and Technology, 2nd ed., Vol. 12, pp. 1-75, J. Wiley-Interscience 1988, R. Vieweg et al., Plastics Handbook, Vol. III, Polyester, Carl Hanser Verlag, 1973, Ullmann's Encyclopadis der Techn. Chemie, 4th ed., Vol. 19, pp. 61-81, Verlag Chemie, 1980). The manufacturing methods serve either self polycondensation of hydroxycarboxylic acids or the polycondensation of dicarboxylic acids with dihydroxy compounds. The former polymers can be reproduced with the general formula ##STR4## where R' stands for a suitable hydrocarbon group; the latter can be reproduced with the general formula ##STR5## where R" stands for a suitable spacing hydrocarbon group; and R"' for the hydrocarbon group of a dicarboxylic acid; and n or n' exhibits in both cases a value corresponding to a molecular weight of the polymer of >10-15.times.10.sup.3. Those polymers in which R" stands for --CH.sub.2)x-- for x=2,4 or 6, have proven to be of particular industrial importance; and specifically those polymers, wherein R" stands for --C.sub.2 H.sub.4 -- and R"' stands for --C.sub.6 H.sub.4 -- (polyethylene terephthalate, PET) and wherein R" stands for --C.sub.4 H.sub.8 -- (polybutylene terephthalate, PBT).
In general the polyalkylene terephthalates can be processed like a thermoplastic in injection moulding or through extrusion. Parts comprising PET are charcterized, among other things, by hardness and good abrasion resistance at high dimensional stability.
They exhibit in general a satisfactory impact strength, but only a moderate notch impact strength. Man-made fibers (polyester fibers, abbreviation PES according to DIN 60 001 T1) represent the most important area of application for linear polyesters. In addition, the use of saturated polyesters as injection moulding and extrusion moulding compounds and as film material have gained in importance (cf. kunststoffe 79, pp 925-926 (1989).
Therefore, there has been no lack of effort to improve the properties of these bulk plastics, where special stress was laid upon the improvement of the notch impact strength. A large number of patents deal, e.g., with the modification of polyesters by blending them with polyacrylates or through copolymerization of said polyesters.
A large number of patents are applicable to the practical goal of impact modification of polyesters, where one could resort to known ideas. Glass fiber reinforced PBT can be blended, for example, advantageously with methacrylate-methyl methacrylate copolymers (JP-A 74 90 345; Chem. Abstr. 82, 99221a). Improved mouldability is claimed, e.g., for blending PET with a (partially) saponified methyl methacrylate-methylacrylate copolymer (cf. JP-A 84 47 256; Chem. Abstr. 101, 131 801 p). The oil resistance of a mixture comprising >50 parts by weight of PMMA and <50 parts by weight of saturated polyester such as PET is underscored in JP-A 84 152 945 (Chem. Abstr. 102, 79 763g). Blending polyalkylene terephthalate with 5-30 wt % of an acrylate graft polymer such as butyl acrylate-methyl methacrylate graft copolymer (cf. DE-A 33 28 568) serves to improve the notch impact strength.
An improvement in the notch impact strength is also achieved according to EP-A 50 265 by blending thermoplastic polyesters with core shell polymerizates, comprising a tough acrylate phase as core and a hard shell comprising PMMA or styrene.
In connection with a silane coupling component, blends of PBT and polyacrylates have, according to EP-A 190 030, good impact strength and extensibility. Observed is a lower moulding temperature.
A blend of PET and polyglycidyl methacrylate and/or fatty acid polyester is known from JP-A 87 149 746 (Chem. Abstr. 108, 7017t). Graft copolymers of tetr

REFERENCES:
patent: 3591659 (1971-07-01), Brinkmann
Chemical Abstracts, Band 113, Nr. 2, 9 Jul. 1990, (Columbus, Ohio, US) siehe Seite 66, Zusammenfassung Nr. 7727c & JP, A, 01295880 (Tomoegawa Paper Co. Ltd) 29 Nov. 1989.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compatible polymeric mixtures does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compatible polymeric mixtures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compatible polymeric mixtures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1004852

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.