Compacted nucleic acids and their delivery to cells

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C12N 1511

Patent

active

058773029

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to the compaction of nucleic acids and the delivery of compacted exogenous nucleic acids to cells of multicellular organisms, in vivo.
2. Description of the Background Art
Functional exogenous genes can be introduced to mammalian cells in vitro by a variety of physical methods, including transfection, direct microinjection, electroporation, and coprecipitation with calcium phosphate. Most of these techniques, however, are impractical for delivering genes to cells within intact animals.
Receptor-Mediated Uncompacted DNA Delivery In Vivo. Receptor-mediated gene transfer has been shown to be successful in introducing transgenes into suitable recipient cells, both in vitro and in vivo. This procedure involves linking the DNA to a polycationic protein (usually poly-L-lysine) containing a covalently attached ligand, which is selected to target a specific receptor on the surface of the tissue of interest. The gene is taken up by the tissue, transported to the nucleus of the cell and expressed for varying times. The overall level of expression of the transgene in the target tissue is dependent on several factors: the stability of the DNA-carrier complex, the presence and number of specific receptors on the surface of the targeted cell, the receptor-carrier ligand interaction, endocytosis and transport of the complex to the nucleus, and the efficiency of gene transcription in the nuclei of the target cells.
Wu, et al., U.S. Pat. No. 5,166,320, discloses tissue-specific delivery of DNA using a conjugate of a polynucleic acid binding agent (such as polylysine, polyarginine, polyornithine, histone, avidin, or protamine) and a tissue receptor-specific protein ligand. For targeting liver cells, Wu suggests "asialoglycoprotein (galactose-terminal) ligands". These may be formed, Wu says, either by desialation of appropriate glycoproteins, or by coupling lactose to non-galactose bearing proteins. The molar ratio of polynucleic acid to conjugate is in the range 1:10 to 10:1, more typically 1:5 to 5:1, more preferably 1:2 to 3:1. While not stated by Wu et al., in our hands, Wu's method resulted in structures with a diameter of at least 80 nm.
Low, et al., U.S. Pat. No. 5,108,921, disclose binding biotin to DNA to transform a cell using receptor mediated endocytosis.
Stomp, et al., U.S. Pat. No. 5,122,466 and McCabe, et al., U.S. Pat. No. 5,120,657 disclose attaching DNA to a metal pellet by covalently attaching polylysine to the material and then allowing DNA to be complexed to it. The resulting product is then used for ballistic transformation of a cell. See Stomp, et al., column 7, lines 29-37and McCabe, et al., column 7, lines 49-65.
Wagner, et al., Proc. Natl. Acad. Sci., 88:4255-4259 (1991) disclose complexing a transferrin-polylysine conjugate with DNA for delivering DNA to cells via receptor mediated endocytosis. Wagner, et al., teach that it is important that there be sufficient polycation in the mixture to ensure compaction of plasmid DNA into toroidal structures of 80-100 nm diameter, which, they speculate, facilitate the endocytic event. Wagner et al. do not recognize the value of attaining smaller diameter structures or teach how to obtain a greater degree of compaction. It is believed that Wagner et al's structures are multimolecular complexes, which have the disadvantage that they are more vulnerable to macrophage phagocytosis and less amenable to uptake by target tissues.
Direct injection of Naked, Uncompacted DNA. The possibility of detecting gene expression by directly injecting naked DNA into animal tissues was demonstrated first by Dubenski et al, Proc. Nat. Acad. Sci. USA, 81:7529-33 (1984), who showed that viral or plasmid DNA injected into the liver or spleen of mice was expressed at detectable levels. The DNA was precipitated using calcium phosphate and injected together with hyaluronidase and collagenase. The transfected gene was shown to replicate in the liver of the host animal. Benvenisty and Reshef, Proc. Nat. Aca

REFERENCES:
patent: 5108921 (1992-04-01), Low et al.
patent: 5120657 (1992-06-01), McCabe et al.
patent: 5122466 (1992-06-01), Stomp et al.
patent: 5149782 (1992-09-01), Chang et al.
patent: 5166320 (1992-11-01), Wu et al.
patent: 5354844 (1994-10-01), Beug et al.
Bunnell, B., Askari, F., Wilson. J., "Targeted Delivery of Antisense Oligonucleotides by Molecular Conjugates", Somatic Cell and Molecular Genetics, vol. 18, No. 6 1992, pp. 559-569.
Gershon, H., Ghirlando, R., Guttman, S., Minsky, A., "Mode of Formation and Structural Features of DNA-Cationic Liposome Complexes Used for Transfection". American Chemical Society, Biochemistry 1993, 32 7143-7151.
Perales, J., Ferkol, T., Beegen, H., Ratnoff, O., Hanson, R., "Gene transfer in vivo: Sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake". Proc. Nat. Acad. Sci. vol. 91, pp. 4086-4090, Apr. 1994.
Perales, J., Ferkol, T., Molas, M., Hanson, R., "An evaluation of receptor-mediated gene transfer using synthetic DNA-ligand complexes". Eur. J. Biochem. 226, 255-266 (1994).
Davidson, B., Fasman, G., "The Single-Stranded Polyadenylic Acid-Poly-L-lysine Complex. A Conformational Study and Characterization". Pub. No. 662 Biochemistry vol. 8 Oct. 1969.
Wagner, Ernst et al. Transferin-polycation-DNA complexes: The effect of polycations on the structure of the complex and DNA delivery to cells: Proc. Natl. Acad. Sci. USA. vol. 88., pp. 4255-4259, May 1991.
Christiano, Richard et al. "Hepatic gene therapy: Adenovirus enhancement of receptor-mediated gene delivery and expression in primary hepatocytes." Proc. Natl. Acad. Sci. USA. vol. 90, pp. 2122-2126. Mar. 1993.
Wu, George Y. et al. "Receptor-mediated in Vitro Gene Transformation by a Soluable DNA Carrier System." The Journal of Biological Chemistry. vol. 262, No. 10, pp. 4429-4432. Apr. 5, 1987.
Wilson, James M. et al. "Hepatocyte-directed Gene Tranwsfer in Vivo Leads to Transient Improvement of Hypercholostolemia in Low Density Lipoprotein Receptor-deficient Rabbits." The Journal of Biological Chemistry. vol. 267, No. 2, pp. 963-967, Jan. 15, 1992.
Neda, Hiroshi et al. "Chemical Modification of an Ecotropic Murine Leukimia Virus Results in Redirection of Its Target Cell Specificity." The Journal of Biological Chemistry. vol. 266, No. 22. pp. 14143-14146. Aug. 5, 1991.
Wu. George Y. et al. "Evidence for Targeted Gene Delivery to Hep G2 Hepatoma Cells in Vitro." Biochemistry, vol. 27, pp. 887-892. 1988.
Wu, George Y. et al. "Receptor-mediated Gene Delivery in Vivo." The Journal of Biological Chemistry, vol. 266 No. 22, pp. 14338-14342. Aug. 5, 1991.
Wu, George Y. et al. "Receptor-mediated Gene Delivery and Expression in Vivo." The Journal of Biological Chemistry, vol. 263 No. 29, pp. 14621-14624. Oct. 15, 1988.
Wu, Catherine H. et al. "Targeting Genes: Delivery and Persitent Expression of a Foreign Gene Driven by Mammalian Regulatory Elements in Vivo." The Journal of Biological Chemicstry, vol. 264, No. 29, pp. 16985-16987. Oct. 15, 1989.
Curiel, David T. et al. "Adenovirus enhancement of transferr in-polylysine-mediated gene delivery." Proc. Natl. Acad. Sci. USA. vol. 88, pp. 8850-8854. Oct. 1991.
Lerman, L.S. "A Transition to a Compact Form of DNA in Polymer Solutions." Proc. Natl. Acad. Sci. USA. vol. 68, No. 8. pp. 1886-1980. Aug. 1971.
Gosule, Leonard C. et al. "Compact form of DNA induced by spermidine." Nature. vol. 259, Jan. 29, 1976.
Laemmli, U.K. "Characterization of DNA condensates induced by pol(ethylen oxide) and polylysine,." Proc. Nat. Acad. Sci. USA. vol. 72, No. 11, pp. 4288-4292. Nov. 1975.
Post, Carol Beth et al. "Theory of DNA Condensation: Collapse Versus Aggregation." Biopolymers. vol. 21, pp. 2123-2137. 1982.
Schlepper-Schafer, Jutta et al. "Endocytosis Via Galactose Receptors in Vivo." Experimental Cell Research 165 1986 pp. 494-506.
Wagner et al., Proc. Natl. Acad. Sci., USA 88, pp. 4255-4259, 1991.
Midoux et al., Nuc. Acids. Res., vol. 21 (4), pp. 871-878, 1993.
Kaetzel et al., Proc. Natl Acad.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compacted nucleic acids and their delivery to cells does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compacted nucleic acids and their delivery to cells, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compacted nucleic acids and their delivery to cells will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-424092

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.