Compact video microscope

Television – Special applications – Microscope

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06452625

ABSTRACT:

BACKGROUND
The invention relates to a compact video microscope according to the preamble of claim
1
, as it is described in EP 380 904 A1,and/or according to the preamble of claim
2
.
U.S. Pat. No. 4,206,966 has disclosed a microscope in which for the purpose of visual representation the object image is projected onto the rear side of a ground glass screen which is accommodated in the upper housing part of the microscope and serves as a viewing screen. Moreover, U.S. Pat. No. 5,031,099 has disclosed a computer-assisted video microscope which comprises a microscope with a conventional microscope stand, a computer arranged separately therefrom, and peripherals associated with the computer, such as monitor, printer, keyboard etc. In this case, the computer includes diverse plug-in cards which permit both communication with the peripherals and the driving of different motor functions of the microscope—such as the motorized focusing drive and the motorized mechanical stage.
The substantial space requirement is a disadvantage of such non-integrated solutions, because the individual components—such as monitor, computer and other peripherals—are arranged next to one another on a working surface. Again, the many connecting cables required reduce the reliability of the overall design and constitute obstacles in the operating environment. The representation of high-resolution images has to date been associated with monitors having picture tubes with a large screen diagonal, because by contrast with flat screens the individual pixels are relatively large with picture tubes. Associated with this is not only a high space requirement, but also a high weight of the monitor, and this makes it difficult to use the overall system at changing locations. Likewise a hindrance to such use at changing locations is the need to disconnect cable connections during disassembly and to have to reestablish them during assembly.
The device described in WO 96/20421 A1 serves the purpose of observing a current microscopic image in common with a pictorial representation of a spatial object obtained by a second device. The known arrangement is characterized in that it includes an “adaptive control device” which by automatically matching the two pictorial representations always offers the observer a geometrically consistent superimposed image. What is decisive here is that this “adaptive control device” uses algorithms, position-measuring devices and positioning motors to relieve the user of the work of correctly setting in spatial and geometric terms the microscopic representation and that produced otherwise. Separate monitors are used for the representation, while small displays which are observed via the oculars of the microscope used provide an alternative.
By contrast, the video microscope or the video tube according to the invention permits the visual manual production of a superimposition of the current microscopic image and a stored—preferably microscopic—image in apparently one plane directly on the integrated flat screen.
DE 196 09 288 A1 describes a video microscope which is installed in the form of a miniaturized module in a commercially available computer and is typically accommodated in a drive bay of said computer, or is operated as an external unit in a commercially available peripheral housing for computers. With its automated feed of standard specimen slides, this miniaturized microscope is suitable chiefly for routine tasks in medical laboratories. It represents, as it were, a counterpart to the present application, because in DE 196 09 288 A1 the microscope is installed in an existing computer, while the video tube according to the invention either contains the computer or is operated with a separate computer.
The quantitative optical microscope described in EP 380 904 A1 aims at creating a very high-resolution optical microscope for quantitative imaging using large sensor surfaces and high-aperture objectives for producing very large (“ultrawide”) visual fields. The central aim of this optical arrangement is direct imaging of the object onto an image sensor while omitting any further imaging optical elements between the objective and image sensor. A high image resolution is to be achieved both by a large visual field in conjunction with a high numerical aperture of the objective, and by a large-area image sensor provided with many pixels. It is to be rendered possible thereby to use a single image to obtain a good overview, and also to study details at any desired point by observing a subsequently determined section. This known proposed solution would require the creation and provision of such special objectives. The commercially available objectives quoted in the description do not deliver this type of imaging by themselves, since they require either additional compensating optical systems, or else a tubular lens in order to meet the demands of adequate optical correction, and/or to generate at all a real optical intermediate image. However, it is precisely these additional optical systems which the invention aims to exclude. Furthermore, the use of a video signal for transmitting image data between the image sensor and computer is expressly excluded. Again, aspects of an integration of all the components into a single housing, and the exclusive observation via a screen are neither addressed nor set forth.
A disadvantage in the principle of known proposed solutions is to be seen in that microscopic images for electronic image sensors—such as CCD cameras—are generated by an imaging optical system which is connected to the same tube and the associated tubular lens which also generates the intermediate image for the oculars. In the case of the use of the nowadays generally customary objectives for optical microscopes, the optical system for the image sensor or sensors is always situated downstream of a tubular lens. However, because the diagonals of the active receiving surfaces of image sensors are much smaller than the relatively large intermediate images required for the oculars, in the designs nowadays customary the image enlarged by the tubular lens is subsequently reduced again for projecting onto the image sensors. This contradicts the basic requirement of generating an optical microscopic image using as few lenses as possible, in order to keep disturbing influences—such as reflections and light absorption by the optical components—slight.
SUMMARY OF THE INVENTION
It is therefore the object of the present invention to create a video microscope or a video tube for microscope stands for all contrasting methods and types of specimen customary in optical microscopy which permits a compact design, a more comfortable way of observing the image and the data linked to it, as well as permitting operation which is supported to the greatest possible extent by suitable software.
This object is achieved by means of a video microscope having the features described herein, and by a video tube having the features described herein. Advantageous developments of said microscope or video tube are the subject matter described herein.
For such a microscope or for a video tube of such a type, the weight and the space requirement of the overall system are lastingly reduced. Finally, the purely light-optical observation of the image with the aid of tube and ocular(s) is dispensed with. Instead of this, it is rendered possible to orientate in the specimen by the optical representation of a survey image on the rear side of a flat screen. It is rendered possible to record, represent and document microscopic images in a purely electronic way without the assistance of film material or other image carriers of a chemical nature. By virtue of the fact that it is possible to install in the optical microscope components such as microphone, loudspeaker and miniature video cameras which are, for their part, linked to the installed computer via corresponding electronic signal transducers, further possibilities arise directly at the optical microscope from voice control of the optical microscope, the recording of voice dat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compact video microscope does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compact video microscope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compact video microscope will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2857437

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.