Semiconductor device manufacturing: process – Making device or circuit responsive to nonelectrical signal – Responsive to electromagnetic radiation
Reexamination Certificate
1999-05-27
2001-02-13
Niebling, John F. (Department: 2812)
Semiconductor device manufacturing: process
Making device or circuit responsive to nonelectrical signal
Responsive to electromagnetic radiation
C438S048000, C438S051000, C438S053000, C438S064000, C438S066000, C438S067000, C438S074000, C438S078000, C324S207160, C324S252000, C324S260000, C324S262000
Reexamination Certificate
active
06187609
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of sensors and, more particularly to the fields of sensors and methods of mounting sensors.
BACKGROUND OF THE INVENTION
Over the years sensors have been developed which include transducers that possess a specific preferred orientation in relation to an electrical field, a magnetic field, or a mechanical force to be sensed. To maximize the response of the sensor, the transducer must be oriented in the direction of this field or force. Some examples of electrical or magnetic field sensors are position and proximity sensors such as Hall effect, magnetoresistor, capacitive, and inductive sensors and electrical current field sensors. Mechanical force sensors generally measure the flow or pressure of a liquid or gas, the mechanical stress or weight of an object, or the acceleration of an object. These sensors generally have a preferred orientation of the transducer to the electrical or magnetic field or to the physical force being sensed in order to maximize the sensitivity of the transducer.
Also, there may be other extraneous electrical or magnetic fields or mechanical forces in the system. The transducer may have to be oriented relative to these extraneous fields or forces in a specific direction to reduce the sensitivity of the transducer to them. This helps to eliminate sensing errors or noise caused by the movement of other objects or caused by the presence of other fields or forces.
These sensors also conventionally employ signal conditioning circuitry or a signal conditioner to amplify or otherwise condition the transducer signal. The signal conditioner is needed, for example, because the transducer signal is usually too low in magnitude to overcome noise or contains a large offset or other error signals that and in the signal conditioner and is thus effectively compensated for in the same manner as short term changes in temperature.
During the manufacturing process, both the transducer and the signal conditioner are formed on a common surface on the wafer known as the planar surface. Since components are not usually formed on top of other components, this results in transducers and signal conditioners that have a large surface area relative to the depth of the devices. The area taken up by these devices is generally measured along this planar surface. The depth of all such semiconductor devices is usually fixed by design considerations and is not relative to the number of devices.
Prior art sensors generally manufacture the signal conditioner and transducer on the same wafer and interconnect the two using conductive traces defined directly on the wafer. The prior art sensors are then installed as a single monolithic chip in the sensor. Since the transducer generally should be oriented in a specific direction relative to the field being sensed, this requires that the signal conditioner be oriented also to the field in like manner.
Also, the amount of area occupied by the transducer is much smaller than the area occupied by the signal conditioner. Orientation of both a transducer and a signal conditioner along the same plane generally produces a larger cross section for the sensor than could be achieved by orienting the transducer to the field and orienting the signal conditioner separately in whatever direction needed to realize the smallest cross section. Because the signal conditioner does not require a specific orientation in relation to the field, a much smaller cross section in relation to a specific direction of measurement can be realized by changing the orientation of the transducer and signal conditioner so they are orthogonal. This can only be accomplished if the transducer and signal conditioner are physically separated and electrically connected using some means other than the conductive traces so the transducer can be oriented to the field or force separately from the signal conditioner.
SUMMARY OF THE INVENTION
With the foregoing in mind, the present invention advantageously provides a compact sensing apparatus that achieves a smallest cross section in relation to a defined axis. The present invention also advantageously provides a compact sensing apparatus and method which simplify manufacture of a sensing apparatus or sensor by providing means for orienting the transducer in a selected direction in relation to the signal conditioner.
The present invention accomplishes these objects and advantages relating to field orientation by positioning a transducer in a specific orientation relative to a signal conditioner in a sensing apparatus. The transducer and signal conditioner can be manufactured simultaneously on a semiconductor wafer and means are employed to either leave the transducer and signal conditioner oriented as manufactured or to arrange them physically at right angles to each other to provide the maximum sensitivity to the field for the transducer and the minimum cross section for the sensing apparatus along its axis of orientation.
The present invention also accomplishes the objects and advantages of the orientation of the transducer and signal conditioner by employing electrically conductive pins that are rigid. The pins provide electrical connection between the transducer and the signal conditioner and between the signal conditioner and external sensor monitoring equipment.
More particularly, a compact sensing apparatus according to the present invention preferably includes plurality of mounting pins. Each of the plurality of mounting pins preferably includes a first pin portion and a second pin portion connected to the first pin portion at a predetermined angle. The first pin portion preferably has a length less than the second pin portion, and the predetermined angle is preferably less than 180 degrees and more preferably in the range of about 70-110 degrees. A transducer is formed from a semiconductor wafer mounted to the first pin portion for generating a transducer signal. Signal conditioning means also is formed from the same semiconductor wafer and mounted to the second pin portion for conditioning the transducer signal.
A compact sensing apparatus according to another aspect of the present invention preferably includes a plurality of mounting pins. Each of the plurality of mounting pins includes a first pin portion and a second pin portion connected to the first pin portion at a predetermined angle. The first pin portion preferably has a length less than the second pin portion. A transducer is mounted to the first pin portion for generating a transducer signal. A signal conditioner is mounted to the second pin portion for conditioning the transducer signal. The signal conditioner is preferably mounted to the second pin portion so that the lateral extent of the signal conditioner is generally perpendicular to the lateral extent of the transducer.
According to other aspects of the present invention, a compact sensing apparatus has the plurality of mounting pins which are defined by a plurality of spaced-apart and elongate mounting pins. The lengthwise extent of each of the plurality of spaced-apart and elongate mounting pins is spaced-apart from and generally parallel to the lengthwise extent of another one of the plurality of pins. The plurality of spaced-apart and elongate mounting pins include a plurality of generally coaxially aligned and laterally spaced-apart mounting pins. Each of the laterally spaced-apart portions extending between the generally coaxially aligned mounting pins is positioned at a different lengthwise extending location than another generally parallel and spaced apart plurality of elongate mounting pins so that at least two of the laterally spaced-apart portions define a plurality of, staggered gaps extending between the generally coaxially aligned mounting pins. The plurality of staggered gaps thereby advantageously form electrical isolation between the plurality of generally coaxially aligned mounting pins and thereby increase the stiffness of the sensing apparatus. The plurality of mounting pins are each formed of an electrically conductive rigid mat
Smith, Jr. Marshall E.
Stettler Richard W.
Wolff Peter U.
Allen, Dyer, Doppelt, Milbrath & Gilcrest, P.A.
Niebling John F.
Simkovic Viktor
Wolff Controls Corporation
LandOfFree
Compact sensing apparatus having reduced cross section and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Compact sensing apparatus having reduced cross section and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compact sensing apparatus having reduced cross section and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2582760