Compositions: coating or plastic – Coating or plastic compositions – Inorganic settable ingredient containing
Patent
1988-02-09
1990-12-25
Dixon, Jr., William R.
Compositions: coating or plastic
Coating or plastic compositions
Inorganic settable ingredient containing
106643, 106737, 106713, 106711, C04B 1438, C04B 1448
Patent
active
049799924
DESCRIPTION:
BRIEF SUMMARY
BRIEF DISCLOSURE OF THE INVENTION
The present invention relates to a completely new type of composite structure, in the following termed CRC (compact reinforced composite) with unique mechanical properties:
A very high strength (in any direction) combined with a very large rigidity (in any direction) and a large strain capacity--also in tension--with retainment of a very high internal coherence.
The structure is built up of a strong base matrix, which is typically very brittle in itself, the base matrix being heavily reinforced with fine fibres, thereby forming a stronger and more ductile material, this heavily fibre-reinforced material in itself functioning as a matrix in a composite reinforced with a high concentration of main reinforcement such as steel bars. This new class of material or structure may, for example, be cement-based and has, in that case, an apparent similarity with reinforced concrete, but with an exceptionally high load capacity, not only in compression, but also in tension, for example, a bending capacity corresponding to about 150 to 300 MPa as compared to 20 MPa for good conventional reinforced concrete, with retention of substantial internal coherence also in the tensile zone (crack-free behaviour at tensile strains above 3 mm/m, as compared to tensile strains of only 0.1-0.2 mm/m before cracking of the concrete material in reinforced concrete occurs).
The strength of the new material of the invention is more like that of structural steel, not only in compression, but also in tension, bending and shear, but at the same time, the material has the advantage of being a composite material with all the possibilities which such a structure opens up for tailoring specific (often directional) properties such as strength, hardness, chemical resistance, etc., possibilities which are not available with monolithic materials like steel.
As a composite material or structure, the material or structure of the invention opens new dimensions in that it shows very high strength and stiffness for loads in any direction where conventional high-quality fibre-reinforced materials such glass-fibre or carbon-fibre-reinforced plastics perform really well only in tension.
The new composite of the invention is the hitherto non-existing composite--or for that matter non-existing material on the whole--to be used in very large massive structures showing very high rigidity, load capacity and toughness for loads in any direction:
High-quality conventional fibre-reinforced composites, such as carbon fibre-reinforced plastics, are unable to resist large loads in shear and compression and are absolutely unsuitable for large structures.
Structural steel, on the other hand, is obviously a very useful material also in structures which are large with respect to overall size and weight, but cannot realistically be used effectively in massive structures of greater thickness than about 200-400 mm, because the available methods of processing steel (rolling, welding, casting, etc.) do not realistically permit the preparation of thicker steel structures.
With respect to massive structures which are able to take up large forces, also in tension, conventional reinforced concrete has hitherto been the only candidate material, but its strength, especially in tension, is inferior to the strength of high-strength fibre-reinforced composite and structural steel.
The material according to the invention, CRC, can be effectively used in massive structures of sizes which were hitherto only possible with reinforced concrete, but with mechanical properties--in any direction--more like those of advanced fibre composite (in tension) and structural steel.
This exceptional behaviour of the material of the invention is based on the utilization of novel principles of mechanical behaviour to benefit from an almost neglected knowledge that strong brittle materials fracture in tension after having shown a very small deformation in a narrow zone after maximum stress has been reached, the narrow zone still carrying load.
By fibre-reinforcing the br
REFERENCES:
patent: 3650785 (1972-03-01), Ball et al.
patent: 4382820 (1983-05-01), Inoue
patent: 4559881 (1985-12-01), Lankard et al.
patent: 4780141 (1988-10-01), Double et al.
Aktieselskabetarlborg Portland-Cement-Fabrik
Brunsman David M.
Dixon Jr. William R.
LandOfFree
Compact reinforced composite does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Compact reinforced composite, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compact reinforced composite will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1160579