Compact package structure for fiber optic devices

Optical waveguides – Accessories

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S147000

Reexamination Certificate

active

06334020

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to fiber optics, and, more particularly, to a structure in which fiber-optic devices are packaged.
Fiber optic technology is based upon the propagation of light through relatively fine-diameter glass fibers. Generally, a fiber-optic fiber is formed of an optical glass core and a glass casing. Light travels through the core and is confined to the core by internal reflection from the glass casing. With this structure, light signals may be propagated over long distances with little loss of signal strength. In some fiber-optic fibers, a polymeric (e.g., acrylate) buffer layer overlies the core and casing to protect them.
As used herein, the term “fiber-optic fibers” encompasses macroscopic light-transparent fibers in which light is propagated, generated, or processed. Fiber-optic fibers include, for example, multimode, single-mode, polarization maintaining, and specialty-doped fibers, for applications such as, for example, laser, amplifier, and double-clad amplifier fibers. Fiber-optic fibers do not include integrated optical waveguides for the present purposes.
Fiber optics is used in a number of fields, such as communications and signal processing. In some of these applications, the fiber-optic fibers are utilized in an elongated form that may reach tens to hundreds of meters in length. Even with a protective buffer layer present, there is a concern that the fiber-optic fiber of this length may be damaged during assembly or service. Each fiber-optic fiber must therefore be packaged in a manner that does not damage the fiber-optic fiber by scratching, kinking, or the like, and does not stress the fiber-optic fiber by an unacceptably large amount. Either physical damage or excessive stresses may adversely influence the operation of the fiber-optic fiber.
There is a need for fiber-optic packaging structures which provide the fiber-optic fibers in a useful form and arrangement, while protecting the fibers.
The present invention fulfills this need, and further provides related advantages.
SUMMARY OF THE INVENTION
The present invention provides a fiber-optic device package structure that supports a fiber-optic fiber and, where needed for an application, a light-processing device optically connected to the fiber-optic fiber such as a coupler, a wavelength division multiplexer, an isolator, and/or a connector. The package structure is built in modular stage subassemblies that facilitate design, development, assembly, testing of the fiber-optic device, and repair and/or replacement of stages in which faults are found. Each stage subassembly accommodates a wide range of types, diameters, and lengths of fiber-optic fiber, without alteration of the basic stage design. When constructed of space-qualified materials, the package structure is fully qualified for space applications.
In accordance with the invention, a fiber-optic device package structure comprises at least one, and preferably several, optical stage subassemblies. Each optical stage subassembly comprises a thermal/structural plate, a plurality of turns of a fiber-optic fiber supported on the thermal/structural plate, and a light connector to the fiber-optic fiber. Desirably, the turns of the fiber-optic fiber are encapsulated within an encapsulant, such as a thermally conductive RTV epoxy or RTV silicone, to form a freestanding annulus. The package structure further includes a housing in which the optical stage subassemblies is received, so that the housing surrounds and encloses each optical stage subassembly.
There may be additional fiber-optic fiber annuluses supported on each optical stage subassembly, and there may be multiple optical stage subassemblies. One or more of the optical stage subassemblies may have a light-processing device mounted to the optical stage subassembly, preferably within the periphery of the fiber-optic fiber annulus. Optical connections to the fiber-optic fibers are provided as necessary. The optical connections may extend to external fiber-optic fibers, other optical stage subassemblies, or the mounted devices. The present approach is highly flexible and may be used with a variety of different fiber-optic systems, because the modular design permits a wide range of applications, types of fiber-optical fibers, light-processing devices, and other components and arrangements. The various subsystems may be designed for assembly on individual optical stage subassemblies, facilitating repair or replacement.
The housing of the present invention protects the fiber-optical fiber structure and any optical devices and interconnections from physical and chemical damage, and may be made hermetic if desired. It also provides shielding to protect the interior structure from radiation damage.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention. The scope of the invention is not, however, limited to this preferred embodiment.


REFERENCES:
patent: 5185843 (1993-02-01), Aberson et al.
patent: 5917648 (1999-06-01), Harker
patent: 5975769 (1999-11-01), Larson et al.
patent: 6072931 (2000-06-01), Yoon et al.
patent: 6144792 (2000-11-01), Kim et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compact package structure for fiber optic devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compact package structure for fiber optic devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compact package structure for fiber optic devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2592512

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.